Notes MATH-2080-Es31 2013 January 29

You have probably noticed that I like to do calculus using differentials. Differentials and
the related differential forms are often used in applications, especially (but not only)

to physics. The official textbook originally covers differentials incompletely and only in
one minor application; it then uses them again for integration, at least as a notational
convenience. But they are useful for much more. Now is the time to explain what they
are.

Notation and terminology

If y is a variable quantity, then dy is the differential of y. You can think of dy as in-
dicating an infinitely small (infinitesimal) change in the value of y, or the amount by
which y changes when an infinitesimal change is made. A precise definition is at the end
of these notes, but you are not responsible for knowing that; what you need to know is
how to use differentials.

Note that dy is not d times y, and d is also not exactly a function of y. Rather, y
(being a wariable quantity) should itself be a function of some other quantity x, and dy
is also a function of a sort; so d is an operator: something that turns one function into
another function. (However, an expression like Ady does involve multiplication: it is A
times the differential of y.)

We often divide one differential by another; for example, dy/dx is the result of di-
viding the differential of y by the differential of z. The textbook introduces this notation
early to stand for the derivative of y with respect to x, and indeed it is that; but what
the book doesn't tell you is that dy/dz literally is dy divided by dz. (Unfortunately,
d?y/dx?, the second derivative, is not literally d?y divided by dz?, at least not in any
generally useful way that I know.)

Differentials and the Chain Rule
One sometimes sees the Chain Rule expressed as

dy dy du
de  du dz’ ()

but the Chain Rule is a nontrivial fact that cannot be proved by simply cancelling fac-
tors. I prefer to state the Chain Rule as

df(u) = f'(u) du; (2)

the point is that the same function f’ appears regardless of which argument u we use.
Even this is more abstract than how the Chain Rule is applied. For example, sup-
pose that you have discovered (say from the definition as a limit) that the derivative of
f(z) =sinx is f'(x) = cosz. Since f'(z) may be defined as df(z)/dz, this derivative can
be expressed in differential form without even bothering to name the functions involved:

d(sinz) = cos x dz. (3)
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Once you know this, you know something even more general:

for any other differentiable quantity u; the power to derive equation (4) from equation (3)

d(sinu) = cosudu

is the Chain Rule. Thus, using v = 2% (to continue the example),

You may divide both sides of this equation by dz if you wish, but the basic calculation

d(sin (1:2)) = cos (2?) d(z?) = cos (2?)(2z dz) = 2z cos (2?) du.

involves only rules for differentials.

For the record, here are the rules for differentiation using differentials that you should

know:
e The Constant Rule: dk = 0 if k is constant.
e The Sum Rule: d(u + v) = du + dv.
e The Translate Rule: d(u+ k) = du if k is constant.
e The Difference Rule: d(u — v) = du — dv.
e The Product Rule: d(uv) =vdu + udv.
e The Multiple Rule: = kdu if k is constant.

The Quotient Rule: ( ) vdu —u dv.

e The Power Rule: d(u ) = ku ol du if k is constant.
e The Exponentiation Rule: d(k") = k" Inkdu if k is constant.

d
The Logarithm Rule: d(log, u) = ulzk if k£ is constant.

The Sine Rule: d(sinu) = cos u du.

The Cosine Rule: d(cosu) = — sinu du.

The Tangent Rule: d(tanu) = sec? u du.

The Cotangent Rule: d(cotu) = — csc? u du.
The Secant Rule: d(secu) = tanusecu du.
The Cosecant Rule: d(cscu) = — cot ucscu du.

u
Via
d

The Arcsine Rule: d(arcsinu) =

The Arccosine Rule: d(arccosu) =

d
The Arctangent Rule: d(arctanu) = " _l: :
The Arccotangent Rule: d(arccot u) du
e Arccotangent Rule: d(arccotu) = —
& u? +1
du

The Arcsecant Rule: d(arcsecu) =

IUI\/u2

|u\\/ u2 lu[vaZ —1
The First Fundamental Theorem of Calculus: d(j f(t) dt) = f(v)dv — f(u)du.

The Arccosecant Rule: d(arccscu) =

The last one might not be familiar to you in that form, but it's also very handy.

Page 2 of 4



Partial derivatives

Notice that every one of the rules above turns the differential on the left into a sum of
terms (possibly only one term, or none in the case of the Constant Rule), each of which
is an ordinary expression multiplied by a differential (or something algebraically equiva-
lent to this). Such an expression is called a differential form, or more precisely a differ-
ential 1-form. (If, when you are calculating the differential of an expression, your result
at any stage is not like this, then you have made a mistake!)

Now apply this to a function of several variables. If f(z,y, z) can be expressed using
the operations in the list above (and possibly even if it cannot), then its differential will
come out as

df(l',y,Z) = fl(l',y,Z) dx + f2(x7y72) dy + f3($7y7z) dz (5)
for some functions f1, f2, and f3. These functions are the partial derivatives of f.
(Since subscripts can be used for many things, another notation for these is D, f for f;.)
For example, if f(x,y,2) = 22y + sin (22), then
df(z,y,2) = 2zyda + z? dy + 2z cos (2?) dz,

SO
fl(x7y7 Z) = zxyv

f2($7y72) = xza and
fa(x,y,2z) = 2z cos (22)

If instead we write u for f(z,y,z), then we have a different notation for the coeffi-
cients on the differentials:

du = <%> dzr + <%> dy + <@> dz.
ox vz o/, 0z oy
So for example, if u = 2%y + sin (22), then

du = 2zy dz + 2% dy + 2z cos (2?) dz,

SO 3
(),
ox Yz
Ou 5
<8_y> =x“, and

<%>xy = 2z cos (2?).

You read (au/ax)y’z as ‘the partial derivative of u with respect to z, fixing y and 2’,
which means <whatever comes before dz in an expansion of du in the variables x, ,
and z>. All of this information is necessary to avoid ambiguity, although in practice peo-
ple usually write simply du/0z and expect you to guess from context what the other
variables are.

Of course, people also mix notation for f with notation for w, writing D, f, f., 0f/0z,
and so on.
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Differential forms

Besides the differential 1-forms discussed above, there are more general differential forms
with terms involving products of differentials. There are several kinds, but the simplest
are the exterior differential forms; here is a typical one:

2?2 dx A dy + zyde A dz — 3zyzdy A dz.

The wedge ‘A’ for multiplication is there to indicate that these are exterior differential
forms; and this form of multipliciation is like the cross product of vectors in that it is
skew-commutative:

dy Adx = —dz A dy.

This is a more advanced subject, but it explains many otherwise strange formulas that
we will need towards the end of this course.

Appendix: Definitions

Since d is an operator, it must be applied to a function. Suppose that f is a function of
n variables; I'll write f(Z) instead of f(x,y,...), since n could be any number (well, any
whole number). Then define the differential df of f to be a function of 2n variables;
but write <df(s?)|ﬁ> instead of df (f, fz) for the value of this function at # and h. Its
definition is this: ~
(df(@)|h) = lim fE+in) - f (x>.

t—0 t

We say that f is differentiable at & if <df(a?)|ﬁ> is defined for every possible value
of h.

Now, I have been applying d to variables like z and y and to expressions built out
of them. So in order to make sense of this, I must have been tacitly assuming that these
expressions are functions of some quantity or quantities. If all of the quantities in an ap-
plication of calculus may be expressed as functions of n quantities Z, then we pick these
and call them the independent variables. So, if v is any of these quantities, then we
have u = f(Z) for some function f (possibly a constant function or an unknown func-
tion, but still in principle some function). These independent variables do not have to be
anything that appears directly in any calculation (because of the Chain Rule); for these
definitions to work, it is only necessary that some choice of indepedent variables is possi-
ble.

If u = f(&), then when we write du, we simply mean df(Z), where df is the func-
tion of 2n variables defined above. This leaves du as a function of only n variables, the
variables written as h above. Technically, a differential form such as 3dx + 2y dz is also
a function of the n variables h, defined by

(3dx + 2y dz|h) = 3(dx|h) + 2y(dz|h).

In all of our applications of differentials, when we write equations between differential
forms, we are really writing equations between functions of h. However, we never both-
er to apply these to any particular argument. It is in this way that all of the rules for
manipulating differentials become true theorems.
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