
Notes Math-2080-es31 2014 January 27

I like to do calculus using di�erentials. Di�erentials and the related di�erential forms are often used in ap-
plications, especially (but not only) to physics. The o�cial textbook originally covers di�erentials incom-
pletely and only in one minor application; it then uses them again for integration, at least as a notational
convenience. But they are useful for much more. Now is the time to explain what they are.

Notation and terminology
If u is a variable quantity, then du is the di�erential of u. You can think of du as indicating an in�nite-
ly small (in�nitesimal) change in the value of u, or the amount by which u changes when an in�nitesimal
change is made. A precise de�nition appears later in these notes.

Note that du is not d times u, and du is also not exactly a function of u. Rather, u (being a variable
quantity) should itself be a function of some other quantities x, y, . . ., and du is also a function of a sort;
so d is an operator : something that turns one function into another function. (However, an expression like
A du does involve multiplication: it is A times the di�erential of u.)

We often divide one di�erential by another; for example, dy

dx
is the result of dividing the di�erential

of y by the di�erential of x. The textbook introduces this notation early to stand for the derivative of y

with respect to x, and indeed it is that; but what the book doesn t tell you is that dy

dx
literally is dy divid-

ed by dx. Unfortunately, d2y

dx2
, the second derivative, is not literally d2y = d(dy) divided by dx2 = (dx)2;

for this reason, I prefer the notation
�

d
dx

�2
y =

d
dx

�
d
dx

y

�
=

d(dy/dx)
dx

.

Di�erentials and the rules of di�erentiation
One sometimes sees the Chain Rule expressed as

dy

dx
=

dy

du
· du

dx
,

but the Chain Rule is a nontrivial fact that cannot be proved by simply cancelling factors. I prefer to
state the Chain Rule as

df(u) = f ′(u) du;
the point is that the same function f ′ appears regardless of which argument u we use.

Even this is more abstract than how the Chain Rule is applied. For example, suppose that you have
discovered (say from the de�nition as a limit) that the derivative of f(x) = sin x is f ′(x) = cos x. Since
f ′(x) may be de�ned as df(x)

dx
, this derivative can be expressed in di�erential form without even bother-

ing to name the functions involved:

(1) d(sinx) = cos xdx.

Once you know this, you know something even more general:

(2) d(sin u) = cos udu

for any other di�erentiable quantity u; the power to derive equation (2) from equation (1) is the Chain
Rule. Thus, using u = x2 (to continue the example),

d
�
sin (x2)

�
= cos (x2) d(x2) = cos (x2)(2xdx) = 2x cos (x2) dx.

You may now divide both sides of this equation by dx if you wish, but the basic calculation involves only
rules for di�erentials.
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For the record, here are the rules for di�erentiation that you should already know, expressed using
di�erentials:
• The Constant Rule: dk = 0 if k is constant.
• The Sum Rule: d(u + v) = du + dv.
• The Translate Rule: d(u + k) = du if k is constant.
• The Di�erence Rule: d(u− v) = du− dv.
• The Product Rule: d(uv) = v du + udv.
• The Multiple Rule: d(ku) = k du if k is constant.
• The Quotient Rule: d

�
u

v

�
=

v du− u dv

v2
.

• The Power Rule: d
�
uk� = kuk−1 du if k is constant.

• The Root Rule: d(k
√

u) =
k
√

udu

kuk
if k is constant.

• The Exponentiation Rule: d(eu) = eu du.
• The Logarithm Rule: d(ln u) =

du

u
.

• The Sine Rule: d(sinu) = cosu du.
• The Cosine Rule: d(cosu) = − sin udu.
• The Tangent Rule: d(tanu) = sec2 udu.
• The Cotangent Rule: d(cot u) = − csc2 udu.
• The Secant Rule: d(sec u) = tan u sec udu.
• The Cosecant Rule: d(csc u) = − cot u csc udu.
• The Arcsine Rule: d(asinu) =

du√
1− u2

.

• The Arccosine Rule: d(acosu) = − du√
1− u2

.

• The Arctangent Rule: d(atan u) =
du

u2 + 1
.

• The Arccotangent Rule: d(acotu) = − du

u2 + 1
.

• The Arcsecant Rule: d(asec u) =
du

|u|√u2 − 1
.

• The Arccosecant Rule: d(acsc u) = − du

|u|√u2 − 1
.

• The Chain Rule: d(f(u)) = f ′(u) du (where f is a di�erentiable function of one variable).
• The First Fundamental Theorem of Calculus: d

�w v

u
f(t) dt

�
= f(v) dv − f(u) du (where f is a continu-

ous function of one variable).
The last one might not be familiar to you in that general form, but it s handy.

Partial derivatives
Notice that every one of the rules above turns the di�erential on the left into a sum of terms (possibly on-
ly one term, or none in the case of the Constant Rule), each of which is an ordinary expression multiplied
by a di�erential (or something algebraically equivalent to this). Such an expression is called a di�erential
form, or more precisely a di�erential form of rank 1 (or a 1-form for short) since there are other sorts of
di�erential forms (some of which we will use later on).

Now apply this to a function of several variables. If f(x, y, z) (for example) can be expressed using
the operations in the list above (and possibly even if it cannot), then its di�erential will come out as

df(x, y, z) = f1(x, y, z) dx + f2(x, y, z) dy + f3(x, y, z) dz
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for some functions f1, f2, and f3. These functions are the partial derivatives of f . Since subscripts can
be used for many things, a better notation for these is Dif for fi; compare the notation Df for f ′ in one-
variable Calculus. For example, if f(x, y, z) = x2y + sin (z2), then

df(x, y, z) = 2xy dx + x2 dy + 2z cos (z2) dz,

so
D1f(x, y, z) = 2xy,
D2f(x, y, z) = x2, and
D3f(x, y, z) = 2z cos (z2).

If instead we write u for f(x, y, z), then we have a di�erent notation for the coe�cients on the di�er-
entials:

du =
�

∂u

∂x

�
y,z

dx +
�

∂u

∂y

�
x,z

dy +
�

∂u

∂z

�
x,y

dz.

So for example, if u = x2y + sin (z2), then

du = 2xy dx + x2 dy + 2z cos (z2) dz,

so �
∂u

∂x

�
y,z

= 2xy,�
∂u

∂y

�
x,z

= x2, and�
∂u

∂z

�
x,y

= 2z cos (z2).

This
�

∂u

∂x

�
y,z

is the partial derivative of u with respect to x, �xing y and z, which simply means

whatever comes before dx in an expansion of du in the variables x, y, and z. All of this information is
necessary to avoid ambiguity, although in practice people usually write simply ∂u

∂x
, call this the partial

derivative of u with respect to x, and expect you to guess from context what the other variables are.
Of course, people also mix notation for f with notation for u, writing Dxf , fx,

∂f

∂x
, and so on, as well

as ux, u1, D1u, and so on. Technically, notation with numbers makes sense only when applied to the name
of a function, because the arguments of that function come in a speci�c order; while notation referring to
the variables used does not make sense when applied to the name of a function, since one could use any
variables as the arguments of the function, although it does make sense when applied to an expression
such as f(x, y, z). In practice, however, people usually use the variables x, y, z in that order; then there
is no confusion.

Applying di�erentials to curves
It s time to actually give a de�nition of du. Since d is an operator, it must be applied to a function; so we
should have u = f(x, . . .) (by which I mean u = f(x, y), u = f(x, y, z), or whatever) for some function f .
We say that the function f is di�erentiable at some point p if, for every di�erentiable parametrized curve c
with c(0) = p, the composite function f ◦ c is di�erentiable at 0. (Notice that f ◦ c is an ordinary real-
valued function of one real variable.) If f is di�erentiable at every point p in its domain, then we simply
say that f is di�erentiable. In this case, we also say that the quantity u = f(x, . . .) is di�erentiable in x, y,
and z.

A very general notion of derivative of f , therefore, is (f ◦ c)′(0), which we ve just said exists when f
and c are di�erentiable. So, if f is di�erentiable at p, then this de�nes an operation that, when given a
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di�erentiable curve c with c(0) = p, results in the real number (f ◦ c)′(0). Formally, we de�ne the di�er-
ential of f at p to be this operation:

〈df(p)|c〉 = (f ◦ c)′(0).

If u = f(x, . . .) is a di�erentiable quantity, then du simply means df(x, . . .). More generally, given any dif-
ferential form M du + N dv + · · ·, this is an operation on curves taking a curve c to M〈du|c〉+ N〈dv|c〉+
· · ·. When we write an equation between di�erential forms, we mean that the result is the same for every
curve c.

There are two good things about this de�nition. First of all, all of the usual rules of di�erentiation
are actually true of it; because the de�nition ultimately refers to ordinary functions, we can prove each
rule on page 2 by using the corresponding result for ordinary functions. The other good thing about this
de�nition is that we will sometimes want to apply a di�erential form to a curve, especially in the special
case where the curve is a line with constant velocity.

Speci�cally, given a point p and a vector v, let c(t) = p + tv; then c is a curve with c(0) = p, so 〈df(p)|c〉
makes sense. We also write 〈df(p)|v〉 for this. If v happens to be a unit vector, then 〈df(p)|v〉 is called
the directional derivative of f at p in the direction of v. In particular, the partial derivatives D1f ,
D2f , and so on are the directional derivatives in the directions of i, j, and so on, the basic vectors paral-
lel to the coordinate axes.
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