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One version of Taylor s Theorem in one-variable Calculus is

f(a+ h) =
k∑

n=0

1

n!
f (n)(a)hn +

1

k!

w 1

t=0
(1− t)

k
f (k+1)(a+ th)hk+1 dt.

To be more explicit, here is the statement for the �rst few values of k:

f(a+ h) = f(a) +
w 1

t=0
f ′(a+ th)hdt

= f(a) + f ′(a)h+
w 1

t=0
(1− t)f ′′(a+ th)h2 dt

= f(a) + f ′(a)h+
1

2
f ′′(a)h2 +

1

2

w 1

t=0
(1− t)

2
f ′′′(a+ th)h3 dt

...

Here, a and h are real numbers, k is a natural number (or possibly 0), and f is a function that is con-
tinuously di�erentiable k + 1 times (at least) between a and a+ h. These statements may be proved by
repeated application of integration by parts (and the Fundamental Theorem of Calculus, which is why
f (k+1) must not only exist but also be continuous).

To write down the general statement in several variables requires more advanced notation than we use
in this class, but I will write down the �rst few statements when f is a function of 2 variables:

f(a+ h, b+ i) = f(a, b) +
w 1

t=0
D1f(a+ th, b+ ti)hdt+

w 1

t=0
D2f(a+ th, b+ ti)i dt

= f(a, b) +D1f(a, b)h+D2f(a, b)i

+
w 1

t=0
(1− t)D1,1f(a+ th, b+ ti)h2 dt+

w 1

t=0
(1− t)D1,2f(a+ th, b+ ti)hidt

+
w 1

t=0
(1− t)D2,1f(a+ th, b+ ti)ihdt+

w 1

t=0
(1− t)D2,2f(a+ th, b+ ti)i2 dt

= f(a, b) +D1f(a, b)h+D2f(a, b)i

+
1

2
D1,1f(a, b)h

2 +
1

2
D1,2f(a, b)hi+

1

2
D2,1f(a, b)ih+

1

2
D2,2f(a, b)i

2

+
1

2

w 1

t=0
(1− t)

2
D1,1,1f(a+ th, b+ ti)h3 dt+

1

2

w 1

t=0
(1− t)

2
D1,1,2f(a+ th, b+ ti)h2i dt

+
1

2

w 1

t=0
(1− t)

2
D1,2,1f(a+ th, b+ ti)hihdt+

1

2

w 1

t=0
(1− t)

2
D1,2,2f(a+ th, b+ ti)hi2 dt

+
1

2

w 1

t=0
(1− t)

2
D2,1,1f(a+ th, b+ ti)ih2 dt+

1

2

w 1

t=0
(1− t)

2
D2,1,2f(a+ th, b+ ti)ihidt

+
1

2

w 1

t=0
(1− t)

2
D2,2,1f(a+ th, b+ ti)i2hdt+

1

2

w 1

t=0
(1− t)

2
D2,2,2f(a+ th, b+ ti)i3 dt

...

These may again be proved by using integration by parts. In fact, by doing the integration by parts in
slightly di�erent ways, we can rearrange the order of the mixed partial derivatives (such as D1,2f and
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D2,1f); this both proves the theorem that the mixed partial derivatives are the same in either order (when
they are continuous) but also allows us to simplify the formulas slightly:

f(a+ h, b+ i) = f(a, b) +
w 1

t=0
D1f(a+ th, b+ ti)hdt+

w 1

t=0
D2f(a+ th, b+ ti)i dt

= f(a, b) +D1f(a, b)h+D2f(a, b)i+
w 1

t=0
(1− t)D1,1f(a+ th, b+ ti)h2 dt

+ 2
w 1

t=0
(1− t)D1,2f(a+ th, b+ ti)hidt+

w 1

t=0
(1− t)D2,2f(a+ th, b+ ti)i2 dt

= f(a, b) +D1f(a, b)h+D2f(a, b)i+
1

2
D1,1f(a, b)h

2 +D1,2f(a, b)hi+
1

2
D2,2f(a, b)i

2

+
1

2

w 1

t=0
(1− t)

2
D1,1,1f(a+ th, b+ ti)h3 dt+

3

2

w 1

t=0
(1− t)

2
D1,1,2f(a+ th, b+ ti)h2i dt

+
3

2

w 1

t=0
(1− t)

2
D1,2,2f(a+ th, b+ ti)hi2 dt+

1

2

w 1

t=0
(1− t)

2
D2,2,2f(a+ th, b+ ti)i3 dt

...

However, in my opinion, the pattern is not so clear when it s put this way.
For purposes of approximation, it s useless to actually work out the integrals that appear here; if you

knew the exact value of the derivatives of f at all the points between (a, b) and (a+ h, b+ i), then you
could probably just evaluate f at (a+ h, b+ i) directly. However, if there is a value M such that you know
that none of the derivatives of f of order k + 1 have an absolute value greater than M at any point be-
tween (a, b) and (a+ h, b+ i), then you can leave o� the integrals to get an approximation of f(a+ h, b+ i)
and then use M to get an estimate of the error of this approximation:

f(a+ h, b+ i) ≈ f(a, b)

≈ f(a, b) +D1f(a, b)h+D2f(a, b)i

≈ f(a, b) +D1f(a, b)h+D2f(a, b)i+
1

2
D1,1f(a, b)h

2 +D1,2f(a, b)hi+
1

2
D2,2f(a, b)i

2

...

with
|f(a+ h, b+ i)− f(a, b)| ≤ M1(|h|+ |i|)

if |D1f | and |D2f | are never greater than M1 between (a, b) and (a+ h, b+ i),∣∣∣f(a+ h, b+ i)−
Ä
f(a, b) +D1f(a, b)h+D2f(a, b)i

ä∣∣∣ ≤ 1

2
M2(|h|+ |i|)2

if |D1,1f |, |D1,2f |, and |D2,2f | are never greater than M2 between (a, b) and (a+ h, b+ i),∣∣∣∣f(a+ h, b+ i)−
Å
f(a, b) +D1f(a, b)h+D2f(a, b)i+

1

2
D1,1f(a, b)h

2 +D1,2f(a, b)hi+
1

2
D2,2f(a, b)i

2

ã∣∣∣∣
≤ 1

6
M3(|h|+ |i|)3

if |D1,1,1f |, |D1,1,2f |, |D1,2,2f |, and |D2,2,2f | are never greater than M3 between (a, b) and (a+ h, b+ i),
etc.

Using vectors, we can write the error in the �rst approximation in any number of variables:

|f(P + v)− f(P )| ≤ M1 |v|1,
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where |v|1 is the so-called 1-norm of v, found by adding up the absolute values of its components. (The
usual magnitude is then called the 2-norm, because these absolute values are raised to the power of 2 be-
fore they are added and then the principal root of index 2 is extracted; in general, you can consider the
p-norm |v|p for any positive real number p, or even other values of p if you re su�ciently clever.) We can
also write the second approximation using vectors:

f(P + v) ≈ f(P ) +∇f(P ) · v,

with ∣∣∣f(P + v)−
Ä
f(P ) +∇f(P ) · v

ä∣∣∣ ≤ 1

2
M2 |v|21

for the error estimate. The next approximation, however, requires dyads, which are more complicated
than vectors; to write down the general case to any order involves a massive generalization of vectors called
tensors. However, you can always write it down in any speci�c dimension by writing a lot of terms accord-
ing to the appropriate pattern; there is also a technique, multi-index notation, to encode these patterns,
which you can see (for example) on the English Wikipedia article on Taylor s Theorem.

Page 3 of 3


