Notes MATH-2080-ES31 2015 April 23

One version of Taylor's Theorem in one-variable Calculus is
G 1 1
flath) =3 —f"(a)h" + k'f (1 — )" FE+D (g 4 th)hFH dt.

n=0

To be more explicit, here is the statement for the first few values of k:

fla+h) = f(a) +j1 £'(a+ th)hdt
= f(a) h+j (a + th)h2 dt

= f(a) + f'(a)h + 5f"(a)h? + 5L:Ou — )% f" (a + th)h® dt

Here, a and h are real numbers, k is a natural number (or possibly 0), and f is a function that is con-
tinuously differentiable k + 1 times (at least) between a and a + h. These statements may be proved by
repeated application of integration by parts (and the Fundamental Theorem of Calculus, which is why
F* D must not only exist but also be continuous).

To write down the general statement in several variables requires more advanced notation than we use
in this class, but I will write down the first few statements when f is a function of 2 variables:

Fla+hb+i) = fa,b) + j;oplf(a +th,b+ ti)hdt + f;osz(a +th,b+ ti)idt
= f(a,b) + D1 f(a,b)h + Do f(a,b)i
+f (1—t)Dy1f(a+th, b+tz)h2dt+j (1= t)Dyof(a+ th,b+ ti)hi dt

+j (1 —t)Day fla+ th, b+m)zhdt+f (1 —t)Daof(a+ th,b+ ti)idt
- f(a> b) + le(a> b)h + D?f(a? b)
1 1 1 1
+ 5Dmf(a, b)h? + 5Dl,zf(a, b)hi + iDgylf(a, b)ih + 5Dmf(a, b)i?

11 2 N7 3 11 2 N7 2.

+ 5L:Ou —#)2Dy 11 fa+th,b+ti)h3 dt + §L:0(1 —4)°Dy 1o f(a + th,b + ti)h%i dt
11 2 N 1t 2 N2
+ §L=o(1 —4)® Dy f(a+ th,b+ ti)hihdt + 5Lzo(l — #)?Dy oo f(a+ th, b+ ti)hi2 dt
1,1 2 P 11 9 Ny .

+ 5L:O(1 — )% D11 f(a+th,b+ ti)ih® dt + §ft:0(1 — )2 Dy12f(a + th,b+ ti)ihi dt

11 2 N -2 11 2 N -3
n §L:0(1 — )2 Dyn 1 fla+ th,b+ti)ihdt + 5L:Ou — )2 Dynaf(a+th,b+ ti)i® dt

These may again be proved by using integration by parts. In fact, by doing the integration by parts in
slightly different ways, we can rearrange the order of the mixed partial derivatives (such as D; o f and
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Dy 1 f); this both proves the theorem that the mixed partial derivatives are the same in either order (when
they are continuous) but also allows us to simplify the formulas slightly:

1 1
Fla+hb+i) = fa,b) + L_Ole(a 4 th,b+ ti)hdt + L_ODgf(a + th, b+ ti)i dt
1
= f(a,b) + D1f(a,b)h+ Daf(a,b)i+ | (1—=#)Dyfla+ th.b+ti)h*dt
1 1
+ 2L70(1 —t)Dyof(a+th,b+ ti)hidt + L70(1 —t)Daof(a+th,b+ ti)i* dt
1 1
= f(a,b) + D1f(a,b)h + D2 f(a,b)i + §D1,1f(a7 b)h? + D12 f(a,b)hi + §D2,2f(av b)i’
1 1 2 . 3 3 1 2 . 2.
+ 5L:Ou —4)2Dy1 1 fla+th,b+ti)R3dt + 5L:O(l — )2 Dy12f(a+ th,b+ ti)h%idt

3t 2 N\ -2 11 2 -\ -3
+ §L:O(1 — t) D17272f(a+th,b+tl)hl dt+ §L:O(1 — t) D27272f(a—|—th,b—|—tz)z dt

However, in my opinion, the pattern is not so clear when it's put this way.

For purposes of approximation, it's useless to actually work out the integrals that appear here; if you
knew the exact value of the derivatives of f at all the points between (a,b) and (a + h, b+ 4), then you
could probably just evaluate f at (a + h,b+ i) directly. However, if there is a value M such that you know
that none of the derivatives of f of order k + 1 have an absolute value greater than M at any point be-
tween (a,b) and (a + h,b+ i), then you can leave off the integrals to get an approximation of f(a + h,b+ 1)
and then use M to get an estimate of the error of this approximation:

fla+h,b+i) =~ f(a,b)
~ f(avb) + le(avb)h+ D2f(a7b)i

~ f(a,b) + D1 f(a,b)h + Dy f(a,b)i + %Dl,lf(a, b)h? + Dy o f(a,b)hi + %Dmf(a, b)i?

with
|f(a+h,b+1i) — f(a,b)] < Mi(|h| +i])

if |D1f| and | D2 f| are never greater than M; between (a,b) and (a + h,b + 1),

My(|h| +i])?

DN | =

[Fa+hib+ i) = (f(a,b) + Difla,b)h + Daf(a,)i)| <
it |D11f|, |D1,2f|, and | D2 2 f| are never greater than My between (a,b) and (a + h,b+ 1),

fm+hw+w—(ﬂmw+Dﬁwwm+Dﬁmwﬁ+éDmﬂmwﬁ+DmﬂmMM+éDmﬂmmﬁﬂ

< ~M(|h] + Ji])®

S| =

if |ID111fl, |D11,2fl, |D122f], and | D222 f| are never greater than Mz between (a,b) and (a + h, b+ 1),
etc.
Using vectors, we can write the error in the first approximation in any number of variables:

[f(P+v) = f(P)] < My |v]y,
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where |v|; is the so-called 1-norm of v, found by adding up the absolute values of its components. (The
usual magnitude is then called the 2-norm, because these absolute values are raised to the power of 2 be-
fore they are added and then the principal root of index 2 is extracted; in general, you can consider the
p-norm |v| , for any positive real number p, or even other values of p if you're sufficiently clever.) We can
also write the second approximation using vectors:

fP+v)= f(P)+V[(P)-v,

with )
2

J(P+v) = (F(P)+ V(P)-v)| < 5Mz |V}
for the error estimate. The next approximation, however, requires dyads, which are more complicated
than vectors; to write down the general case to any order involves a massive generalization of vectors called
tensors. However, you can always write it down in any specific dimension by writing a lot of terms accord-
ing to the appropriate pattern; there is also a technique, multi-index notation, to encode these patterns,
which you can see (for example) on the English Wikipedia article on Taylor's Theorem.
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