15.1.22 From the given parametrization of the curve $C$, we have

$$
\begin{gathered}
x=\cos t \\
y=\sin t \\
0 \leq t \leq 2 \pi
\end{gathered}
$$

Differentiating,

$$
\begin{gathered}
\mathrm{d} x=-\sin t \mathrm{~d} t \\
\mathrm{~d} y=\cos t \mathrm{~d} t
\end{gathered}
$$

So

$$
\mathrm{đ} s=\|\mathrm{d} \mathbf{r}\|=\|\mathrm{d}(x, y)\|=\|\langle\mathrm{d} x, \mathrm{~d} y\rangle\|=\sqrt{\mathrm{d} x^{2}+\mathrm{d} y^{2}}=\sqrt{(-\sin t \mathrm{~d} t)^{2}+(\cos t \mathrm{~d} t)^{2}}=|\mathrm{d} t| .
$$

Therefore,

$$
\begin{aligned}
\int_{C}(x-y+3) \mathrm{d} s & =\int_{t=0}^{2 \pi}((\cos t)-(\sin t)+3)|\mathrm{d} t|=\int_{0}^{2 \pi}(\cos t-\sin t+3) \mathrm{d} t=\left.(\sin t+\cos t+3 t)\right|_{t=0} ^{2 \pi} \\
& =(\sin (2 \pi)+\cos (2 \pi)+3(2 \pi))-(\sin (0)+\cos (0)+3(0)) \\
& =(0+1+6 \pi)-(0+1+0)=(6 \pi+1)-(1)=6 \pi .
\end{aligned}
$$

You can also guess this answer geometrically, since $C$ is the circle of radius 1 centred at the origin. Both $x$ and $y$ are completely balanced between positive and negative around this circle (since it is centred at the origin), so the integrals of $x$ đ $s$ and of $y$ đ $s$ will be zero. As for the integral of 3 đ $s$, this is simply 3 times the circumference of the circle, which is $2 \pi$ (since it has radius 1 ). Thus, the final answer is

$$
0-0+3(2 \pi)=6 \pi .
$$

