
Notes Math-2080-es31 2016 Mar
h 17

Maxwell s equations

One of the basi
 appli
ations of ve
tor 
al
ulus �arguably the original appli
ation� is the 
lassi
al theo-

ry of ele
tromagneti
 �elds that was fully worked almost 150 years ago by James Clerk Maxwell. Maxwell s

equations of ele
tromagnetism have been expressed in many formalisms over the years: expli
itly using

partial derivatives of 
omponent fun
tions (the way Maxwell presented them), using quaternions (like 
om-

plex numbers with three imaginary dimensions, whi
h is how Maxwell really thought of them), using the

ve
tor 
al
ulus of Oliver Heaviside and Willard Gibbs (the simpli�
ation of quaternioni
 
al
ulus that is

taught in the 
ourse textbook), using di�erential forms in three-dimensional spa
e (whi
h is how I usual-

ly think of them), and using di�erential forms in four-dimensional spa
e-time. Ea
h is simpler and more

elegant than the last.

Nearly all of the di�erential forms appearing in these notes will be exterior or pseudoexterior di�er-

ential forms. To keep the notation simple, I will leave out the symbol `∧' in the wedge produ
t and the ex-

terior di�erential. So unless I expli
itly state otherwise, if you see two di�erentials (or di�erential forms)

multiplied together, then they re being multiplied by the wedge produ
t (aka the exterior produ
t); and if

you see the di�erential of a di�erential form, then it s the exterior di�erential. (People who work with ex-

terior di�erential forms usually do this anyway, espe
ially for the di�erential. Note that the exterior di�er-

ential of a nondi�erential expression is the same as its ordinary di�erential, so there is no 
onfusion there.)

Also, unlike in the spe
i�
 problems that you ve done in this 
ourse, I ll use variables that refer dire
tly to

di�erential forms; typi
ally, these variables with be in a fan
y 
alligraphi
 font (`A', `B', `C', . . .).

The quantities in the equations

To be very de�nite, I will give operational de�nitions of the physi
al quantities that appear in Maxwell s

equations, des
ribing how you would (in prin
iple) measure them.

I will take as a basi
 notion the idea of ele
tri
 
harge. Ele
tri
 
harge may be positive or negative,

and the di�eren
e between these is perfe
tly arbitrary (whi
h is in some ways similar to the right-hand

rule); what s important is that there is a di�eren
e, and positive and negative 
harges 
an
el ea
h other

out. In any given region of spa
e, there is a 
ertain total 
harge in that region, whi
h we ll assume is given

by integrating a 
ontinuous rank-3 pseudoexterior di�erential form, the 
harge form Q. (The existen
e of

this di�erential form is a
tually a theorem, under 
ertain assumptions about additivity and 
ontinuity of


harge.) We may write

Q = ρ d̄V = ρdx dy dz,

where the s
alar �eld ρ is the 
harge density. The SI unit of 
harge is the 
oulomb (named after Charles-

Augustin de Coulomb, who dis
overed the inverse-square law of stati
 ele
tri
ity); 
harge density is mea-

sured in 
oulombs per 
ubi
 metre.

Together with ele
tri
 
harge, we have ele
tri
 
urrent, whi
h is the �ow of ele
tri
 
harge. We

measure 
urrent through a pseudooriented surfa
e; the total rate (with respe
t to time) at whi
h 
harge

moves through the surfa
e in the given dire
tion is the 
urrent through that surfa
e. (Negative 
harge

moving through the surfa
e in the negative dire
tion 
ounts positively, like positive 
harge moving in the

positive dire
tion; negative 
harge moving in the positive dire
tion and positive 
harge moving in the neg-

ative dire
tion 
ount negatively.) The 
urrent through a pseudooriented surfa
e is given by integrating a


ontinuous rank-2 pseudoexterior form, the 
urrent form J . We may write

J = J · d̄S = J1 dy dz + J2 dz dx+ J3 dx dy,

where the ve
tor �eld J is the 
urrent density. The SI unit of 
urrent is the 
oulomb per se
ond, or am-

pere (named after Andr�e-Marie Amp�ere, who dis
overed Ampere s Law, dis
ussed below); 
urrent density

is measured in amperes per square metre.

Based on these, we 
an now de�ne some other quantities. When the work (transfer of energy) done on

a 
harged obje
t is proportional to its 
harge, we 
onsider that the work is done by an ele
tri
 �eld. If a


harged obje
t travels through an ele
tri
 �eld along an oriented 
urve, then the work done on the parti
le

is the produ
t of the parti
le s 
harge and the ele
tri
 potential along the 
urve. Sin
e the 
harge on
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any a
tual obje
t is spread out over spa
e and 
harge (as you ll see below) also a�e
ts the ele
tri
 �eld,

we really need to 
onsider the limiting 
ase of an obje
t with both in�nitesimal volume and in�nitesimal


harge density. The ele
tri
 potential along an oriented 
urve is given by integrating a 
ontinuous rank-1
exterior form, the ele
tri
 potential form E . We may write

E = E · dr = E1 dx+ E2 dy + E3 dz,

where the ve
tor �eld E is the ele
tri
 �eld strength. The SI unit of ele
tri
 potential is the joule per


oulomb, or volt; ele
tri
 �eld strength is measured in volts per metre.

The ele
tri
 �eld not only a�e
ts 
harges but also is 
reated by them. As 
harges move in response

to the work done on them by the ele
tri
 �eld, this tends to 
an
el out the original �eld. (This is a gen-

eral theme in ele
tromagnetism, that any phenomenon has e�e
ts that 
ountera
t the original 
ause.) In

parti
ular, if a sheet of material that 
ondu
ts ele
tri
 
urrent (a Faraday shield) is pla
ed in an ele
tri


�eld, then the free 
harged parti
les in the shield will move to opposite sides, blo
king out the ele
tri


�eld in the interior of the sheet. The ele
tri
 �ux through a pseudooriented surfa
e is the total 
harge

indu
ed by the ele
tri
 �eld on the outside of a 
ontinuous Faraday shield along that surfa
e (or opposite

the 
harge indu
ed on the inside of the shield). Again, we must really 
onsider a limiting 
ase, that of a

sheet with in�nitesimal thi
kness and in�nite 
ondu
tan
e. The ele
tri
 �ux through a pseudooriented sur-

fa
e is given by integrating a 
ontinuous rank-2 pseudoexterior form, the ele
tri
 �ux form D. We may

write

D = D · d̄S = D1 dy dz +D2 dz dx+D3 dx dy,

where the ve
tor �eld D is the ele
tri
 displa
ement. The SI unit of ele
tri
 �ux is the 
oulomb again;

ele
tri
 displa
ement is measured in 
oulombs per square metre.

Besides the ele
tri
 �eld, there is also a magneti
 �eld. Although this may be thought of as dealing

with magneti
 poles (instead of ele
tri
 
harges), magneti
 poles are not individual obje
ts but always


ome in pairs. We now understand (and Maxwell already understood) that magnetism deals with ele
tri



urrents, with a north pole and a south pole appearing on either side of a rotating 
urrent. If a wire with


urrent �owing through it travels through a magneti
 �eld, then it tra
es out a surfa
e, whi
h we orient

(not pseudoorient!) as the dire
tion of travel followed by the dire
tion of the 
urrent. Then the work done

on the wire is the produ
t of the wire s 
urrent and the magneti
 �ux on the surfa
e. Sin
e any a
tu-

al 
ondu
ting wire has some thi
kness and 
urrent (as you ll see below) also a�e
ts the magneti
 �eld, we

really need to 
onsider the limiting 
ase of a wire with both in�nitesimal thi
kness and in�nitesimal 
ur-

rent density. The magneti
 �ux on an oriented surfa
e is given by integrating a 
ontinuous rank-2 exterior

form, the magneti
 �ux form B. We may write

B = B · d̄S = B1 dy dz +B2 dz dx+B3 dx dy,

where the pseudo-ve
tor �eld B is the magneti
 �ux density. The SI unit of magneti
 �ux is the joule

per ampere, or weber; magneti
 �ux density is measured in webers per square metre, or teslas.

Just as the ele
tri
 �eld 
auses 
harges to move to 
ountera
t it, so the magneti
 �eld 
reates 
ur-

rents that 
ountera
t it. In parti
ular, if a tube of 
ondu
tive material (a solenoid) is pla
ed in a magneti


�eld, then the �eld will indu
e a 
urrent on the inside of the solenoid, blo
king the magneti
 �eld within

the solenoid. The magneti
 potential around a pseudooriented 
urve (not oriented!) is the total 
ur-

rent indu
ed by the magneti
 �eld in a 
ontinuous solenoid surrounding the 
urve in the dire
tion opposite

the 
urve s pseudoorientation. On
e more, we must really 
onsider a limiting 
ase, that of a tube with in-

�nitesimal radius and in�nite 
ondu
tan
e. The magneti
 potential around a pseudooriented 
urve is given

by integrating a 
ontinuous rank-1 pseudoexterior form, the magneti
 potential form H. We may write

H = H · dr = H1 dx+H2 dy +H3 dz,

where the pseudo-ve
tor �eld H is the magnetizing �eld strength. The SI unit of magneti
 potential is

the ampere again; magnetizing �eld strength is measured in amperes per metre.
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The 
onstitutive relations

Before I get to the four equations generally 
alled Maxwell s, I need to 
lear something up. We have two

ways to measure an ele
tri
 �eld, the ele
tri
 potential along a 
urve (the integral of E) and the ele
tri


�ux through a surfa
e (the integral of D); similarly, we have two ways to measure a magneti
 �eld, the

magneti
 �ux on a surfa
e (the integral of B) and the magneti
 potential around a 
urve (the integral of

H). Sin
e E and D measure the same physi
al �eld, there should be a relationship between them, and the

same for B and H. The simplest relationship would be that ea
h of these quantities is the Hodge dual of

its partner; after all, the Hodge dual of an exterior 1-form is a pseudoexterior 2-form, et
. (Then we would

also have E = D and B = H.) However, there are a few 
ompli
ations with that.

First, if we measure D and H with a
tual 
ondu
ting materials, then (even in the limit of in�nite 
on-

du
tan
e!) there will always be 
harges that are bound in the material, unable to be moved by the �elds,

and there will also be bound 
urrents sometimes (as in a magnet). Thus, D and H e�e
tively measure on-

ly the free 
harge and 
urrent. When people express Maxwell s equations using only E and B instead, they

speak of Maxwell s equations in a va
uum.

Se
ondly, even in va
uum, E and D are measured in di�erent units (and similarly for B and H). Up

to a point, this is expe
ted; sin
e volume has units of 
ubi
 metres, we expe
t the Hodge dual to a�e
t

units. However, this only a�e
ts units of length, and we need more than that (in parti
ular, the units of


harge are reversed). In va

um, the unit 
onversion is done by fundamental physi
al 
onstants, the ele
-

tri
 
onstant ǫ0 and the magneti
 
onstant µ0; then we have

∗E =
D
ǫ0

(so ∗D = ǫ0E) and
∗B = µ0H

(so ∗H = B/µ0). Ultimately, the SI units are de�ned so that ǫ0 is exa
tly

2357

727322933392π
≈ 8.85× 10−12

farads per metre and µ0 is exa
tly

π

2557
≈ 1.26× 10−6

henries per metre. (A farad is a square 
oulomb per joule, named after Mi
hael Faraday, who dis
oved

Faraday s Law, below; a henry is a joule per square ampere. By the way, there are only two more SI units

related spe
i�
ally to ele
tromagnetism: the siemens is a farad per se
ond, and the ohm is a henry per

se
ond. But we will not need these here.)

In a medium, we typi
ally have ∗E = D/ǫ and ∗B = µH (or D = ǫE and H = B/µ in terms of ve
tor

�elds) for some 
onstants ǫ and µ, the permittivity and permeability of the medium. (Then ǫ0 and µ0 are

respe
tively the permittivity and permeability of the va
uum.) Sometimes things are not so simple (for ex-

ample, the permittivity or permeability may depend on the dire
tion); but we always have some relation-

ship between these quantities, 
alled the 
onstitutive relations of the material. When we use di�erential

forms instead of ve
tor �elds, the 
onstitutive relations are the only equations in whi
h the Hodge dual

operator appears, hen
e the only pla
e where geometri
 ideas (su
h as length, angle, and volume) play a

role; using ve
tor �elds obs
ures this fa
t.
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Stati
 systems

Maxwell found four equations, whi
h I will state �rst for stati
 systems, that is those in whi
h the dis-

tribution of 
harges, 
urrents, and �elds does not 
hange with time. In a stati
 system, the total 
urrent

through the boundary of any region of spa
e must be zero, be
ause otherwise the total 
harge inside that

region would be 
hanging; this is the 
ontinuity equation

w
∂Q

J = 0,

whi
h is not 
ounted as one of Maxwell s four. Assuming that J is 
ontinuously di�erentiable, then the

Stokes Theorem turns this into

r
Q
dJ = 0; sin
e this holds for any region Q, we 
on
lude that

dJ = 0,

whi
h is ∇ · J = 0 in terms of the 
urrent density. Like the 
ontinuity equation, ea
h of Maxwell s equa-

tions will have an integral and di�erential form.

The simplest of Maxwell s equations is w
∂Q

B = 0,

stating that the magneti
 �ux through the boundary of any region in spa
e is zero. In other words, mag-

neti
 �ux, like 
urrent in a stati
 system, �ows 
ontinuously with no sink or sour
e. The di�erential form

is

dB = 0,

or ∇ ·B = 0 in ve
tor 
al
ulus.

Similarly, Faraday

′
s Law for stati
 systems states that the ele
tri
 potential along the boundary of

any oriented surfa
e is zero: w
∂R

E = 0.

In di�erential form, this be
omes

dE = 0,

whi
h is ∇×E = 0 in ve
tor 
alulus. Thus, E is an exa
t di�erential, and E is a 
onservative ve
tor �eld.

Next, Gauss s Law (after Carl Gauÿ) states that the total ele
tri
 �ux outward through the boundary

of any region in spa
e equals the total ele
tri
 
harge 
ontained in that region:

w
∂Q

D =
w
Q
Q.

In di�erential form,

dD = Q;

in ve
tor 
al
ulus, ∇ ·D = ρ. Thus, unlike magneti
 �ux, ele
tri
 �ux has sour
es and sinks, whi
h are

ele
tri
 
harges.

Finally, Ampere s Law for stati
 systems states that the magneti
 potential around the boundary of a

pseudooriented surfa
e equals the total 
urrent through that surfa
e:

w
∂R

H =
w
R
J .

In di�erential form,

dH = J ;

in ve
tor 
al
ulus, ∇×H = J. Thus, 
urrents are sour
es for the magneti
 �eld.

The reason that the 
ontinuity equation is not 
ounted as one of Maxwell s equations is that it a
tual-

ly follows from Ampere s Law. Spe
i�
ally (in a stati
 system), we have

w
∂Q

J =
w
∂∂Q

H = 0,

sin
e the boundary of a boundary is empty.
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Ele
trodynami
s

Some of the equations above only apply when the 
harges, 
urrents, and �elds don t 
hange with time.

Maxwell s equations also 
ome in a more general form that drops this assumption. It is easy enough to

state the integral forms of these equations, but the di�erential forms require taking seriously the four-di-

mensional nature of our universe in spa
e and time. In ve
tor 
al
ulus, this is done by treating spa
e and

time separately, but di�erential forms make sense in any number of dimensions; this ultimately simpli�es

Maxwell s equations. Finally, the 
onstitutive relations in 4 dimensions 
larify the nature of the geometry

of spa
etime in our universe, whi
h leads naturally to Albert Einstein s spe
ial theory of relativity.

Here are Maxwell s equations in integral form:

w
∂Q

B = 0,

w
∂R

E = − d

dt

w
R
B,

w
∂Q

D =
w
Q
Q,

w
∂R

H =
w
R
J +

d

dt

w
R
D.

In words, the magneti
 �ux on the boundary of an oriented region of spa
e is still zero, but the ele
tri


potential along the boundary of an oriented surfa
e is now the opposite of the rate of 
hange with time

of the magneti
 �ux on that surfa
e. Similarly, the ele
tri
 �ux out of the boundary of a region of spa
e

is still the total ele
tri
 
harge in that region, but the magneti
 potential around the boundary of a pseu-

dooriented surfa
e is now the sum of the ele
tri
 
urrent through that surfa
e and the rate of 
hange with

time of the ele
tri
 �ux through that surfa
e. The 
ontinuity equation (whi
h now relies on both Ampere s

Law and Gauss s Law) be
omes

w
∂Q

J =
w
∂∂Q

H− d

dt

w
∂Q

D = − d

dt

w
Q
Q;

in words, if 
urrent �ows out of the boundary of a region of spa
e, then the total 
harge in that region

goes down a

ordingly. (The reason that we 
redit these equations to Maxwell, when all of them are laws

dis
overed earlier by other people, is that Amp�ere didn t know about the 
ontribution of D to his law;

Maxwell realized that it had to be there to get the 
orre
t 
ontinuity equation, and this is what made the

system 
omplete.)

If we separate spa
e from time, writing ∂ for the exterior di�erential on spa
e (holding time t 
on-

stant, so giving a merely partial exterior di�erential) and using a dot to indi
ate di�erentiation with re-

spe
t to time, then here are the equations in di�erential form:

∂B = 0,

∂E = −Ḃ,
∂D = Q,

∂H = J + Ḋ.

The 
ontinuity equation in di�erential form is

∂J = −Q̇.

Rewriting in ve
tor 
al
ulus (whi
h is how you usually �nd Maxwell s equations on T-shirts):

∇ ·B = 0,

∇×E = −∂B

∂t
,

∇ ·D = ρ,

∇×H = J+
∂D

∂t
;
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the 
ontinuity equation is

∇ · J = −∂ρ

∂t
.

This is a little unsatisfying, be
ause di�erential forms are supposed to take 
are of all variation of a

quantity, whi
h in this 
ontext is variation in both spa
e and time. In general, we have dω = ∂ω + ω̇ dt,
for ω any di�erential form de�ned on spa
etime. Then d(ω dt) = dω dt = (∂ω + ω̇ dt) dt = ∂ω dt+ 0 =
∂ω dt (sin
e dt dt = 0 with the wedge produ
t). This works for E , H, and J , sin
e Ė , Ḣ, and J̇ never

appear. In fa
t, it works out very ni
ely to multiply Faraday s Law and Ampere s Law by dt. If we then
add or subtra
t these equations from the ones that pre
ede them, then we 
an make dB and dD appear as

well. That is, the �rst pair adds as follows:

∂B + ∂E dt = 0− Ḃ dt,

∂B + Ḃ dt+ ∂E dt = 0,

dB + d(E dt) = 0,

dF = 0.

In the last step, I ve introdu
ed

F = B + E dt,

sometimes 
alled the Faraday form (although the letter originally simply stood for `�eld'). Similarly, the

se
ond pair subtra
ts as follows:

∂D − ∂H dt = Q− J dt− Ḋ dt,

∂D + Ḋ dt− ∂H dt = Q− J dt,

dD − d(H dt) = Q− J dt,

dM = j.

Now in the last step, I ve introdu
ed both the Maxwell form

M = D −H dt

and the four-
urrent form

j = Q− J dt.

Let s take sto
k of where we are. We have a 
ontinuous rank-2 exterior di�erential form F , measured

in webers (whi
h are the same as volt-se
onds), a 
ontinuous rank-2 pseudoexterior di�erential form M ,

measured in 
oulombs (whi
h are the same as ampere-se
onds), and a 
ontinuous rank-3 pseudoexterior

di�erential form j, also measured in 
oulombs. There are now only two Maxwell s equations:

dF = 0,

dM = j;

the 
ontinuity equation is simply

dj = 0.

We 
an also write these equations in integral form:

w
∂R

F = 0,
w
∂R

M = j;
w
∂Q

j = 0.
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Here, R is a 2-dimensional surfa
e embedded in four-dimensional spa
etime, whi
h 
ould be a surfa
e as

we normally think of it, for an instant, but is typi
ally what we would think of as a 
urve, persisting through

time (and perhaps moving, growing, or shrinking). Similarly, Q is a 3-dimensional hypersurfa
e in spa
e-

time, whi
h 
ould be a region of spa
e for an instant but is typi
ally what we would think of as a surfa
e,

again persisting and possibly 
hanging through time. There is no ve
tor-
al
ulus form of these spa
etime

equations; neither F nor M 
an be des
ribed by ve
tors, even ones with 4 
omponents (although there is a


on
ept of bive
tor or antisymmetrized dyad, a kind of tensor, that 
ould be used here if you really insist).

It s worth looking spe
i�
ally at the 
omponents that would go into F , M , and j. We have

F = B + E dt = B · d̄S+E · dr dt = B1 dy dz +B2 dz dx+B3 dx dy + E1 dx dt+ E2 dy dt+ E3 dz dt;

this has 6 
oe�
ients, 
ontaining all of the information in both E and B (so nothing is lost by 
ombining

the two equations into one). Similarly,

M = D −H dt = D · d̄S−H · dr dt = D1 dy dz +D2 dz dx+D3 dx dy −H1 dx dt−H2 dy dt−H3 dz dt,

and

j = Q− J dt = ρ d̄V − J · d̄S dt = ρdx dy dz − J1 dy dz dt− J2 dz dx dt− J3 dx dy dt.

(The information in the four-
urrent form 
an be put into a four-dimensional ve
tor, but I won t bother,

sin
e everything works already with forms.)

Spe
ial relativity

We have not dealt with the 
onstitutive relations in four dimensions. That is, what is the relationship be-

tween F and M? (To keep things simple, work in a va
uum, with ǫ0 and µ0.) At the level of 
omponents,

we already know that Ei = Di/ǫ0 and Bi = µ0Hi. I d like to say that ∗F is a 
onstant times M , but how

does the Hodge dual work in spa
etime? This is not an easy question, but the great thing about Maxwell s

equations is that they tell us how it must work!

We 
an make our jobs a little easier by using (instead of SI units) units of measurement in whi
h ǫ0
and µ0 are 1. Then we have Ei = Di and Bi = Hi exa
tly, and we also should have ∗F = M exa
tly. This

immediately gives us these rules:

∗(dx dt) = dy dz,

∗(dy dt) = dz dx,

∗(dz dt) = dx dy,

∗(dy dz) = −dx dt,

∗(dz dx) = −dy dt,

∗(dx dy) = −dz dt.

If you try to make a 
onsistent mnemoni
 for these rules along the lines of the mnemoni
 that I gave for

the Hodge dual in spa
e (where the Hodge dual is whatever is left afterwards in the volume form), then

you will fail if you try it dire
tly; in parti
ular, the �rst rule suggests dx dt dy dz, but this equals dx dy dz dt
(two reversals), so there s no explanation for the minus sign in the last rule.

However, we 
an make it work if we use imaginary numbers! I will put things ba
k in SI units just for

the sake of giving the full answer; if you think of the volume form as

dx dy dz d(ict),
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where c = 1/
√
ǫ0µ0, then we get these spe
i�
 rules:

∗(dx dt) = ∗
Å

− i

c
dx d(ict)

ã

= − i

c
dy dz,

∗(dy dt) = ∗
Å

− i

c
dy d(ict)

ã

= − i

c
dz dx,

∗(dz dt) = ∗
Å

− i

c
dz d(ict)

ã

= − i

c
dx dy,

∗(dy dz) = dx d(ict) = ic dx dt,

∗(dz dx) = dy d(ict) = ic dy dt,

∗(dx dy) = dz d(ict) = ic dz dt.

Then if you work it through, you get

∗F = −i

 

µ0

ǫ0
M .

I have essentially split the rogue minus sign (whi
h appeared only when dt was on one side of the equa-

tion) into i in ea
h pla
e where dt appears.
It is more fashionable these days to use only real numbers and to use dire
tly the rules for the Hodge

dual that I �rst wrote down. To do this, you think of the volume form as dx dy dz d(ct) and remember

to throw in a minus sign whenever applying the Hodge to a term with dt in it. (This is parti
ularly ni
e

when using units in whi
h c = 1.) But I have always preferred the formulation with imaginary numbers.

This has impli
ations for the notion of length in 4-dimensional spa
etime. Whereas

d̄s2 = dx2 + dy2 + dz2

in 3-dimensional spa
e, the 
orresponding form in spa
etime is

d̄τ2 = dx2 + dy2 + dz2 + d(ict)
2
= dx2 + dy2 + dz2 − c2dt2 = ds2 − c2dt2.

(Unlike everywhere else in these notes, the multpli
ation with whi
h I m squaring these di�erentials is or-

dinary multipli
ation, rather than exterior multipli
ation, and so these di�erential forms are not exterior

or pseudoexterior forms. I m only following the usual pra
ti
e in this; it usually doesn t 
ause 
onfusion,

sin
e dx ∧ dx = 0, so dx2
is unlikely to mean that.) Properly interpreted, this gives us the entire theory of

spe
ial relativity.

Einstein s key insight in that theory was that time is a feature of the geometry of the world as mu
h

as spa
e is. In parti
ular, whether two events happen at the same time depends on your own motion through

spa
e and time, just as mu
h as whether two events happen at the same pla
e. However, time s role in

spa
etime geometry is di�erent from spa
e s role. If you naively use ds2 + dt2, then this doesn t make

sense, be
ause the units don t mat
h, so something like c2 must appear there to 
onvert between units of

spa
e and time. If you use ds2 + c2 dt2, then spa
e and time play the same role in geometry, just mea-

sured in di�erent units. But sin
e ds2 − c2 dt2 is 
orre
t, the roles of time and spa
e are di�erent.

It s in this way that there is an absolute notion of speed, be
ause if ds/dt = c, then dτ2 
omes out

to 0. Also, dτ2 
an sometimes be negative, so that dτ itself is imaginary; this happens for motion that

(like the motion of ordinary matter) is travelling at a speed slower than c. (If you put the minus sign on

the other term, then you get something whi
h is positive for ordinary matter, so sometimes people do this;

it makes no di�eren
e in the end to the physi
al predi
tions of the theory.) Of 
ourse, this spe
ial speed c

is the speed of light in a va
uum, although I haven t explained yet why that is so.

Everything whi
h we regard as a ve
tor in spa
e must now be seen as merely the spa
e part of a ve
-

tor in spa
etime, and there is some s
alar whi
h also serves as its time part. We ll �nd that this s
alar,

while previously thought to be an absolute notion, in fa
t depends on your frame of referen
e in spe
ial

relativity. An important example is the momentum of an obje
t, whose 
orresponding s
alar is (more or

less) its energy. Mu
h of this relationship was known before spe
ial relativity; if px, py, and pz are the
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omponents of momentum in the three dimensions of spa
e, then [px, py, pz,−E] is a row ve
tor that 
an

be multiplied by the 
olumn ve
tor 〈dx, dy, dz, dt〉 to produ
e the a
tion di�erential px dx+ py dy + pz dz −
E dt, whi
h has been used to study me
hani
s sin
e before Einstein was born. If we now use ic dt in pla
e

of dt, then this means that we must use iE/c in pla
e of −E, and the square of the magnitude of the re-

sulting ve
tor is

p2x + p2y + p2z −
E2

c2
.

Again this is negative for ordinary matter, and it has units of mass squared times speed squared, so if you

divide this by −c2 before taking the square root, then you ll get a real value with units of mass:

m =

 

E2

c4
− pz2

c2
− py2

c2
− px2

c2
.

What is this mass? Einstein realized that is simply the mass of the obje
t. In parti
ular, for an obje
t

at rest (so that px, py, and pz are zero), m =
»

E2/c4 = E/c2 (assuming that the energy E is positive);

equivalently,

E = mc2.

A

ordingly, mass is a form of energy that 
an be 
onverted into other forms, as in a nu
lear explosion.
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