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Taylor s Theorem in several variables

One version of Taylor s Theorem in one-variable Calulus is

f(a+ h) =
k

∑

n=0

1

n!
f (n)(a)hn +

1

k!

w 1

t=0
(1− t)

k
f (k+1)(a+ th)hk+1 dt.

To be more expliit, here is the statement for the �rst few values of k:

f(a+ h) = f(a) +
w 1

t=0
f ′(a+ th)h dt

= f(a) + f ′(a)h+
w 1

t=0
(1− t)f ′′(a+ th)h2 dt

= f(a) + f ′(a)h+
1

2
f ′′(a)h2 +

1

2

w 1

t=0
(1− t)

2
f ′′′(a+ th)h3 dt

.

.

.

Here, a and h are real numbers, k is a whole number, and f is a funtion that is ontinuously di�eren-

tiable k + 1 times (at least) between a and a+ h. These statements may be proved by repeated applia-

tion of integration by parts (and the Fundamental Theorem of Calulus, whih is why f (k+1)
must not

only exist but also be ontinuous).

To write down the general statement in several variables requires more advaned notation than we use

in this lass, but I will write down the �rst few statements when f is a funtion of 2 variables:

f(a+ h, b+ i) = f(a, b) +
w 1

t=0
D1f(a+ th, b+ ti)h dt+

w 1

t=0
D2f(a+ th, b+ ti)idt

= f(a, b) +D1f(a, b)h+D2f(a, b)i

+
w 1

t=0
(1− t)D1,1f(a+ th, b+ ti)h2 dt+

w 1

t=0
(1− t)D1,2f(a+ th, b+ ti)hidt

+
w 1

t=0
(1− t)D2,1f(a+ th, b+ ti)ih dt+

w 1

t=0
(1− t)D2,2f(a+ th, b+ ti)i2 dt

= f(a, b) +D1f(a, b)h+D2f(a, b)i

+
1

2
D1,1f(a, b)h

2 +
1

2
D1,2f(a, b)hi+

1

2
D2,1f(a, b)ih+

1

2
D2,2f(a, b)i

2

+
1

2

w 1

t=0
(1− t)

2
D1,1,1f(a+ th, b+ ti)h3 dt+

1

2

w 1

t=0
(1− t)

2
D1,1,2f(a+ th, b+ ti)h2idt

+
1

2

w 1

t=0
(1− t)

2
D1,2,1f(a+ th, b+ ti)hih dt+

1

2

w 1

t=0
(1− t)

2
D1,2,2f(a+ th, b+ ti)hi2 dt

+
1

2

w 1

t=0
(1− t)

2
D2,1,1f(a+ th, b+ ti)ih2 dt+

1

2

w 1

t=0
(1− t)

2
D2,1,2f(a+ th, b+ ti)ihidt

+
1

2

w 1

t=0
(1− t)

2
D2,2,1f(a+ th, b+ ti)i2h dt+

1

2

w 1

t=0
(1− t)

2
D2,2,2f(a+ th, b+ ti)i3 dt

.

.

.

These may again be proved by using integration by parts. In fat, by doing the integration by parts in

slightly di�erent ways, we an rearrange the order of the mixed partial derivatives (suh as D1,2f and
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D2,1f); this both proves the theorem that the mixed partial derivatives are the same in either order (when

they are ontinuous) but also allows us to simplify the formulas slightly:

f(a+ h, b+ i) = f(a, b) +
w 1

t=0
D1f(a+ th, b+ ti)h dt+

w 1

t=0
D2f(a+ th, b+ ti)idt

= f(a, b) +D1f(a, b)h+D2f(a, b)i+
w 1

t=0
(1− t)D1,1f(a+ th, b+ ti)h2 dt

+ 2
w 1

t=0
(1− t)D1,2f(a+ th, b+ ti)hidt+

w 1

t=0
(1− t)D2,2f(a+ th, b+ ti)i2 dt

= f(a, b) +D1f(a, b)h+D2f(a, b)i+
1

2
D1,1f(a, b)h

2 +D1,2f(a, b)hi+
1

2
D2,2f(a, b)i

2

+
1

2

w 1

t=0
(1− t)

2
D1,1,1f(a+ th, b+ ti)h3 dt+

3

2

w 1

t=0
(1− t)

2
D1,1,2f(a+ th, b+ ti)h2idt

+
3

2

w 1

t=0
(1− t)

2
D1,2,2f(a+ th, b+ ti)hi2 dt+

1

2

w 1

t=0
(1− t)

2
D2,2,2f(a+ th, b+ ti)i3 dt

.

.

.

However, in my opinion, the pattern is not so lear when it s put this way.

For purposes of approximation, it s useless to atually work out the integrals that appear here; if you

knew the exat value of the derivatives of f at all the points between (a, b) and (a+ h, b+ i), then you

ould probably just evaluate f at (a+ h, b+ i) diretly. However, if there is a value M suh that you know

that none of the derivatives of f of order k + 1 have an absolute value greater than M at any point be-

tween (a, b) and (a+ h, b+ i), then you an leave o� the integrals to get an approximation of f(a+ h, b+ i)
and then use M to get an estimate of the error of this approximation:

f(a+ h, b+ i) ≈ f(a, b), a onstant approximation, if f is ontinuous;

f(a+ h, b+ i) ≈ f(a, b) +D1f(a, b)h+D2f(a, b)i, a linear approximation, if f is di�erentiable;

f(a+ h, b+ i) ≈ f(a, b) +D1f(a, b)h+D2f(a, b)i+
1

2
D1,1f(a, b)h

2 +D1,2f(a, b)hi+
1

2
D2,2f(a, b)i

2
,

a quadrati approximation, if f is twie di�erentiable;

.

.

.

with

|f(a+ h, b+ i)− f(a, b)| ≤ M1(|h|+ |i|)

if |D1f | and |D2f | are never greater than M1 between (a, b) and (a+ h, b+ i),

∣

∣

∣
f(a+ h, b+ i)−

Ä

f(a, b) +D1f(a, b)h+D2f(a, b)i
ä

∣

∣

∣
≤

1

2
M2(|h|+ |i|)

2

if |D1,1f |, |D1,2f |, and |D2,2f | are never greater than M2 between (a, b) and (a+ h, b+ i),

∣

∣

∣

∣

f(a+ h, b+ i)−

Å

f(a, b) +D1f(a, b)h+D2f(a, b)i+
1

2
D1,1f(a, b)h

2 +D1,2f(a, b)hi+
1

2
D2,2f(a, b)i

2

ã

∣

∣

∣

∣

≤
1

6
M3(|h|+ |i|)

3

if |D1,1,1f |, |D1,1,2f |, |D1,2,2f |, and |D2,2,2f | are never greater than M3 between (a, b) and (a+ h, b+ i),
et.
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Using vetors, we an write the �rst approximation and its error in any number of variables:

f(P + v) ≈ f(P ),

|f(P + v)− f(P )| ≤ M1 |v|1,

where |v|1 is the so-alled 1-norm of v, found by adding up the absolute values of its omponents. (The

usual magnitude is then alled the 2-norm, beause these absolute values are raised to the power of 2 be-

fore they are added and then the prinipal root of index 2 is extrated; in general, you an onsider the

p-norm |v|p for any positive real number p, or even other values of p if you re su�iently lever.) We an

also write the seond approximation and its error using vetors:

f(P + v) ≈ f(P ) +∇f(P ) · v,
∣

∣

∣
f(P + v)−

Ä

f(P ) +∇f(P ) · v
ä

∣

∣

∣
≤

1

2
M2 |v|

2
1

for the error estimate. The next approximation, however, requires dyads to write down, whih are more

ompliated than vetors; to write down the general ase to any order involves a massive generalization of

vetors alled tensors. However, you an always write it down in any spei� dimension by writing a lot

of terms aording to the appropriate pattern, as I did on the �rst page; there is also a tehnique, alled

multi-index notation, to enode these patterns, whih you an see (for example) on the English Wikipedia

artile on Taylor s Theorem.

It s handy to desribe these approximations in terms of di�erentials and di�erenes. While a di�eren-

tial represents an in�nitesimal (in�nitely small) hange, a di�erene represents an appreiable or �nitesi-

mal (not in�nitely small) hange. As R = (x, y) (or (x, y, z) et) hanges from P to P + v, we say that the

di�erene in R is

∆R = (P + v)− P = v.

Meanwhile, if u = f(R), then the di�erene in u is

∆u| R=P,

∆R=v

= f(P + v)− f(P ).

Then the onstant approximation says

∆u| R=P,

∆R=v

≈ 0,

while the linear approximation says (more preisely)

∆u| R=P,

∆R=v

≈ du| R=P,

dR=v

.

So in the end, the linear approximation replaes di�erenes with di�erentials. The next (quadrati) ap-

proximation an be written using the seond di�erential d2u, and so on, but we won t over that in this

lass. The error estimates are

∣

∣

∣
∆u| R=P,

∆R=v

∣

∣

∣
≤ M1 |v|1

and

∣

∣

∣
∆u| R=P,

∆R=v

− du| R=P,

dR=v

∣

∣

∣
≤

1

2
M2 |v|

2
1.
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