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Taylor s Theorem in several variables

One version of Taylor s Theorem in one-variable Cal
ulus is

f(a+ h) =
k

∑

n=0

1

n!
f (n)(a)hn +

1

k!

w 1

t=0
(1− t)

k
f (k+1)(a+ th)hk+1 dt.

To be more expli
it, here is the statement for the �rst few values of k:

f(a+ h) = f(a) +
w 1

t=0
f ′(a+ th)h dt

= f(a) + f ′(a)h+
w 1

t=0
(1− t)f ′′(a+ th)h2 dt

= f(a) + f ′(a)h+
1

2
f ′′(a)h2 +

1

2

w 1

t=0
(1− t)

2
f ′′′(a+ th)h3 dt

.

.

.

Here, a and h are real numbers, k is a whole number, and f is a fun
tion that is 
ontinuously di�eren-

tiable k + 1 times (at least) between a and a+ h. These statements may be proved by repeated appli
a-

tion of integration by parts (and the Fundamental Theorem of Cal
ulus, whi
h is why f (k+1)
must not

only exist but also be 
ontinuous).

To write down the general statement in several variables requires more advan
ed notation than we use

in this 
lass, but I will write down the �rst few statements when f is a fun
tion of 2 variables:

f(a+ h, b+ i) = f(a, b) +
w 1

t=0
D1f(a+ th, b+ ti)h dt+

w 1

t=0
D2f(a+ th, b+ ti)idt

= f(a, b) +D1f(a, b)h+D2f(a, b)i

+
w 1

t=0
(1− t)D1,1f(a+ th, b+ ti)h2 dt+

w 1

t=0
(1− t)D1,2f(a+ th, b+ ti)hidt

+
w 1

t=0
(1− t)D2,1f(a+ th, b+ ti)ih dt+

w 1

t=0
(1− t)D2,2f(a+ th, b+ ti)i2 dt

= f(a, b) +D1f(a, b)h+D2f(a, b)i

+
1

2
D1,1f(a, b)h

2 +
1

2
D1,2f(a, b)hi+

1

2
D2,1f(a, b)ih+

1

2
D2,2f(a, b)i

2

+
1

2

w 1

t=0
(1− t)

2
D1,1,1f(a+ th, b+ ti)h3 dt+

1

2

w 1

t=0
(1− t)

2
D1,1,2f(a+ th, b+ ti)h2idt

+
1

2

w 1

t=0
(1− t)

2
D1,2,1f(a+ th, b+ ti)hih dt+

1

2

w 1

t=0
(1− t)

2
D1,2,2f(a+ th, b+ ti)hi2 dt

+
1

2

w 1

t=0
(1− t)

2
D2,1,1f(a+ th, b+ ti)ih2 dt+

1

2

w 1

t=0
(1− t)

2
D2,1,2f(a+ th, b+ ti)ihidt

+
1

2

w 1

t=0
(1− t)

2
D2,2,1f(a+ th, b+ ti)i2h dt+

1

2

w 1

t=0
(1− t)

2
D2,2,2f(a+ th, b+ ti)i3 dt

.

.

.

These may again be proved by using integration by parts. In fa
t, by doing the integration by parts in

slightly di�erent ways, we 
an rearrange the order of the mixed partial derivatives (su
h as D1,2f and
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D2,1f); this both proves the theorem that the mixed partial derivatives are the same in either order (when

they are 
ontinuous) but also allows us to simplify the formulas slightly:

f(a+ h, b+ i) = f(a, b) +
w 1

t=0
D1f(a+ th, b+ ti)h dt+

w 1

t=0
D2f(a+ th, b+ ti)idt

= f(a, b) +D1f(a, b)h+D2f(a, b)i+
w 1

t=0
(1− t)D1,1f(a+ th, b+ ti)h2 dt

+ 2
w 1

t=0
(1− t)D1,2f(a+ th, b+ ti)hidt+

w 1

t=0
(1− t)D2,2f(a+ th, b+ ti)i2 dt

= f(a, b) +D1f(a, b)h+D2f(a, b)i+
1

2
D1,1f(a, b)h

2 +D1,2f(a, b)hi+
1

2
D2,2f(a, b)i

2

+
1

2

w 1

t=0
(1− t)

2
D1,1,1f(a+ th, b+ ti)h3 dt+

3

2

w 1

t=0
(1− t)

2
D1,1,2f(a+ th, b+ ti)h2idt

+
3

2

w 1

t=0
(1− t)

2
D1,2,2f(a+ th, b+ ti)hi2 dt+

1

2

w 1

t=0
(1− t)

2
D2,2,2f(a+ th, b+ ti)i3 dt

.

.

.

However, in my opinion, the pattern is not so 
lear when it s put this way.

For purposes of approximation, it s useless to a
tually work out the integrals that appear here; if you

knew the exa
t value of the derivatives of f at all the points between (a, b) and (a+ h, b+ i), then you


ould probably just evaluate f at (a+ h, b+ i) dire
tly. However, if there is a value M su
h that you know

that none of the derivatives of f of order k + 1 have an absolute value greater than M at any point be-

tween (a, b) and (a+ h, b+ i), then you 
an leave o� the integrals to get an approximation of f(a+ h, b+ i)
and then use M to get an estimate of the error of this approximation:

f(a+ h, b+ i) ≈ f(a, b), a 
onstant approximation, if f is 
ontinuous;

f(a+ h, b+ i) ≈ f(a, b) +D1f(a, b)h+D2f(a, b)i, a linear approximation, if f is di�erentiable;

f(a+ h, b+ i) ≈ f(a, b) +D1f(a, b)h+D2f(a, b)i+
1

2
D1,1f(a, b)h

2 +D1,2f(a, b)hi+
1

2
D2,2f(a, b)i

2
,

a quadrati
 approximation, if f is twi
e di�erentiable;

.

.

.

with

|f(a+ h, b+ i)− f(a, b)| ≤ M1(|h|+ |i|)

if |D1f | and |D2f | are never greater than M1 between (a, b) and (a+ h, b+ i),

∣

∣

∣
f(a+ h, b+ i)−

Ä

f(a, b) +D1f(a, b)h+D2f(a, b)i
ä

∣

∣

∣
≤

1

2
M2(|h|+ |i|)

2

if |D1,1f |, |D1,2f |, and |D2,2f | are never greater than M2 between (a, b) and (a+ h, b+ i),

∣

∣

∣

∣

f(a+ h, b+ i)−

Å

f(a, b) +D1f(a, b)h+D2f(a, b)i+
1

2
D1,1f(a, b)h

2 +D1,2f(a, b)hi+
1

2
D2,2f(a, b)i

2

ã

∣

∣

∣

∣

≤
1

6
M3(|h|+ |i|)

3

if |D1,1,1f |, |D1,1,2f |, |D1,2,2f |, and |D2,2,2f | are never greater than M3 between (a, b) and (a+ h, b+ i),
et
.
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Using ve
tors, we 
an write the �rst approximation and its error in any number of variables:

f(P + v) ≈ f(P ),

|f(P + v)− f(P )| ≤ M1 |v|1,

where |v|1 is the so-
alled 1-norm of v, found by adding up the absolute values of its 
omponents. (The

usual magnitude is then 
alled the 2-norm, be
ause these absolute values are raised to the power of 2 be-

fore they are added and then the prin
ipal root of index 2 is extra
ted; in general, you 
an 
onsider the

p-norm |v|p for any positive real number p, or even other values of p if you re su�
iently 
lever.) We 
an

also write the se
ond approximation and its error using ve
tors:

f(P + v) ≈ f(P ) +∇f(P ) · v,
∣

∣

∣
f(P + v)−

Ä

f(P ) +∇f(P ) · v
ä

∣

∣

∣
≤

1

2
M2 |v|

2
1

for the error estimate. The next approximation, however, requires dyads to write down, whi
h are more


ompli
ated than ve
tors; to write down the general 
ase to any order involves a massive generalization of

ve
tors 
alled tensors. However, you 
an always write it down in any spe
i�
 dimension by writing a lot

of terms a

ording to the appropriate pattern, as I did on the �rst page; there is also a te
hnique, 
alled

multi-index notation, to en
ode these patterns, whi
h you 
an see (for example) on the English Wikipedia

arti
le on Taylor s Theorem.

It s handy to des
ribe these approximations in terms of di�erentials and di�eren
es. While a di�eren-

tial represents an in�nitesimal (in�nitely small) 
hange, a di�eren
e represents an appre
iable or �nitesi-

mal (not in�nitely small) 
hange. As R = (x, y) (or (x, y, z) et
) 
hanges from P to P + v, we say that the

di�eren
e in R is

∆R = (P + v)− P = v.

Meanwhile, if u = f(R), then the di�eren
e in u is

∆u| R=P,

∆R=v

= f(P + v)− f(P ).

Then the 
onstant approximation says

∆u| R=P,

∆R=v

≈ 0,

while the linear approximation says (more pre
isely)

∆u| R=P,

∆R=v

≈ du| R=P,

dR=v

.

So in the end, the linear approximation repla
es di�eren
es with di�erentials. The next (quadrati
) ap-

proximation 
an be written using the se
ond di�erential d2u, and so on, but we won t 
over that in this


lass. The error estimates are

∣

∣

∣
∆u| R=P,

∆R=v

∣

∣

∣
≤ M1 |v|1

and

∣

∣

∣
∆u| R=P,

∆R=v

− du| R=P,

dR=v

∣

∣

∣
≤

1

2
M2 |v|

2
1.
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