Notes MATH-2080-Es31 2016 February 18
Integration on curves

Differential 1-forms (that is differential forms without the wedge product that we will get to later) can be

integrated along curves. To a large extent, that is what they are for. Since differential forms are made of

differentials and the definition of the differential of an expression (at least the one that I gave in the hand-
out from January 21) is ultimately about curves, this is a very natural operation.

The definition

Like the textbook does for one-variable Calculus, I'll define the Riemann integral as a limit of Riemann
sums, although there are more general notions of integration that can handle more expressions. The Rie-
mann integral will be sufficient for piecewise continuous differential forms (those defined in one or more
pieces using continuous operations applied to continuous quantities and the differentials of continuously
differentiable quantities) along piecewise continuously differentiable curves (those with parametrizations
defined in one more pieces using continuously differentiable operations applied to the parameter).

So, suppose that we have a differential form « written using the variables R = (z,y,...) and their
differentials, and a curve in the same number of dimensions, given by some parametrization function C
whose domain is a closed interval [a,b]. Then we can try to integrate v along the curve where R = C(t),
by defining the integral

J R:C(t)a

Given any way of dividing the interval [a,b] into a partition a =tg <t; < --- <#¢,_1 <t, =b (with
n subintervals) and tagging this partition with n values ¢; with tx_1 < ¢ <t for k from 1 to n (this is
exactly the kind of partition considered in one-variable Calculus, as on pages 302-304 of the textbook),

there is a Riemann sum
n

a| R=C(cg) .

1 dR=C(t},)—C(tg_1)

That is, on the kth subinterval, we evaluate the form « at the point through which the curve passes at
time ¢; within that subinterval along the vector from where the curve is at the beginning of the subin-
terval to where it is at the end of the subinterval. If we require that the magnitude of this vector be less
than ¢ and take the limit as § — 0T, then this limit (if it exists) is the value of the integral. And there is
a theorem that it does exist, at least if « is piecewise continuous and C' is piecewise continuously differ-
entiable (and sometimes otherwise); I don't know a nice proof of this directly, but you can prove that it
exists because the practical calculation method on page 2 works.

There is now another nice theorem, that the value of this integral does not depend on the parametriza-
tion of the curve, at least not very much. That is, if ¢ is a function in the ordinary sense (a real-valued
function of one real variable), then C o ¢ is another parametrized curve; if ¢ is one-to-one and increas-
ing (so that we travel along the curve in the same direction without repetition) and its range lies entirely
within the domain of C' (so that we cover the entire curve), then the theorem is that fch(t)a = IR:(CO¢)(t)a.
The proof is that any Riemann sum for C' is also a Riemann sum for C o ¢; the same points C(¢;) and
C(ck) occur in the same order, just at different values of the parameter. So the Riemann integrals, which
are the limits of these Riemann sums, must also be the same.

For this reason, we usually don't specify a parametrized curve in the notation at all. Instead, we spec-
ify an oriented curve, which is anything that could be given as a parametrized curve, keeping track of
which direction we travel along the curve (this is the orientation of the curve) but otherwise ignoring the
parametrization.
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Evaluating integrals on curves

The practical method of evaluating integrals on curves is to pick any convenient parametrization (prefer-
ably one that is continuously differentiable) and put everything in terms of that parameter. For example,
to integrate 2z da + 32y dy along the top half of the circle 22 + y? = 4, oriented counterclockwise, try the
parametrization where x = 2cost, y = 2sint, and 0 <t < 7. Then dx = —2sintdt and dy = 2costdt, so
the value of the integral is

jﬁ s yso 2z de + 3y dy) = L 0 (2(2 cost)(—2sintdt) + 3(2cost)(2sint)(2cost dt))
dz<0 =
L_(J( 8sintcost + 24sint cos® t) dt = 16.

(You can do this last integral with the substitution u = cost.) I've described the curve of integration with
an equation (of a circle) and an inequality (to get the top half only) and oriented it by saying that x is
always decreasing (so that dz is always negative), but usually people write that all out to the side some-
where, call the resulting oriented curve C (for example), and write simply fc.

The reason why this gives the correct result is that any Riemann sum for the integral involving ¢ in-
volves almost the same calculations as a Riemann sum for the integral along the curve. The only differ-
ence is that the integral involving ¢ looks at the point from the middle of each subinterval to handle the
differentials, whereas as the integral of the curve looks at the points on each end of the subinterval. But in
the limit, all of these points approach each other, and the result is the same. (There is another slight com-
plication because the integral involving ¢ takes a limit as the change in ¢ goes to 0, while the integral along
the curve takes a limit as the magnitude of the change in position goes to 0. However, these are the same
because the parametrization is continuous. If you can calculate dx and dy at all, then the parametrization
must be differentiable and so definitely continuous.)

You should be able to visualize this example geometrically well enough to see that the answer would
have to be positive. The term 2z dz should completely cancel, because the right half of the curve exactly
mirrors the left half, with dz the same on both halves (always negative because of movement to the left)
but z being the opposite on the two halves (first positive, then negative). On the other hand, the term
3xy dy will be negative on both sides; while y is always positive (above the horizontal axis),  and dy are
both positive on the right half (right of the vertical axis and moving upwards) and both negative on the
left half (left of the axis and moving downwards), making for a positive product everywhere.

If you are asked to integrate a vector field F along an oriented curve, then they really want you to in-
tegrate the differential form F(z,y) - (dz,dy), or more generally F(R) - dR, where R is (z,y) or (z,y, 2).

If you write r for the vector R — O (where O is the origin (0,0) or (0,0,0)), then dR = dr, and this is the
reason for the traditional notation fCF - dr, which is used in the textbook. You may also see fCF -Tds,
where ds is the ds that appears at the very bottom of this page and T is defined to be dr/ds. This is usu-
ally completely pointless; if you see T ds, just think of it as dr.

For example, to integrate (2x, 3zy) along the same semicircle as in the previous example (with the
same orientation), you do exactly the same integral as in the previous example. This is because

(2x,3xy) - (dz,dy) = 2z dz + 3zy dy,

S0
fc<2x, 3xy) - dr = IC(Qx dz + 3xydy) = 16

as before. Since the vector (2x, 3zy) points to the right on the right side and to the left on the left side,
while we move along the curve consistently to the left, this suggests that the horizontal component should
cancel. However, since this vector points upwards where we move upwards along the curve (on the right
side) and points downwards where we move downards along the curve (on the left side), this suggests a
positive contribution from the vertical component. So as in the first example, you should expect a positive
result even before doing the calculation.

If you are asked to integrate a function f along a curve, then they really want you to integrate the
differential form f(x,y)/da? + dy?, or more generally f(R)|dR|. It's traditional to write ds for |dR]| (or
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|dr|, which is the same), but it's important that there is no quantity s defined everywhere that ds is the
differential of. To emphasize this, you can write ds; ‘d’ is a symbol that some people use when something
is traditionally written with ‘d’ but is not really a differential.

As long as the differentials dx etc appear only in ds, then the result of the integral is independent
of orientation, because replacing dx with —dx (as would happen upon reversing the orientation) doesn't
change ds. For this reason, you can integrate a function along an unoriented curve. When parametrizing,
everything will come out using |d¢| instead of dt, but as long as the integral involving ¢ has its bounds set
up so that t is increasing, then dt is positive and so |dt| = d¢, after which you can integrate normally.

For example, to find the length of the semicircle in the previous example, you get

ds = \/dac2 +dy? = \/(—2Sintdt)2 + (2costdt)® = \/(4sin2t + 4cos? t) dt? = V4aVdt2 = 2|dt|.

Thus, the length is
LQW:& ol = [ 2t = [~ 2dt=o2m.
If for some reason you set the integral up backward, then d¢ would be negative and so |dt| would be —d¢,
and the result would be the same in the end:
0 0 0
jcds = sz |dt| = L:ﬂZ(—dt) = —ng dt = —(—27) = 2.

(But it's simpler to always set things up so that the parameter is increasing.)

Pseudooriented curves

In 2 dimensions, you'll sometimes be asked to integrate a vector field across a curve rather than along it
as usual. Although there is no standard notation for this, you can write it as as F x dr in analogy with
the usual F - dr. The book sometimes writes F - nds, where n = xT and dr = T ds, but this just results
in F- xdr =F x dr. This is the 2-dimensional cross product, so the result is still a scalar. Technically,
however, it is actually a pseudoscalar, because which scalar it is depends on how you orient the plane
(counterclockwise as is the convention or clockwise instead). Similarly, specifying a direction across a curve
really gives the curve a pseudoorientation, because it only defines a direction along the curve (an orien-
tation) by picking a convention about how these directions correspond. In practice, we orient the plane
counterclockwise, meaning that counterclockwise cross products are positive, the rotation xv of a vector v
is obtained by rotating it clockwise, a direction across a curve turns into a direction along it by rotation
counterclockwise, and a direction along a curve turns into a direction across it by rotating clockwise. But
if you consistently did all of these the other way, then the results of all integrals would be the same.

For example, to integrate (2x, 3y) across our semicircle, now pseudooriented upwards, integrate

(2z,3zy) x (dz,dy) = 2z dy — 3zy dz,

and use the orientation counterclockwise from upwards, which is leftwards (the same as in first example):

fm2+y2:47 =0 (27, 37y) X dr = jw2+y2:4, =0 (2 dy — 3wy dz)
dy>0

dz<0

= L:O((2(2 cost)(2costdt)) — 3(2cost)(2sint)(—2 sintdt))

= (" 8cos?t 4 24sin® tcost) dt = 4.
t=0

Since the vector (2z,3zy) points to the right where we cross the curve to the right (on the right side) and
points to the left where we cross to the left, this suggests that the horizontal component should give a pos-
itive result. However, since this vector points upwards on the right side and downwards on the left side,
while we cross the curve consistently upwards, this suggests that the vertical component should cancel. So
you should again expect a positive result before doing the calculation.
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