
Notes Math-2080-es31 2016 February 18

Integration on 
urves

Di�erential 1-forms (that is di�erential forms without the wedge produ
t that we will get to later) 
an be

integrated along 
urves. To a large extent, that is what they are for. Sin
e di�erential forms are made of

di�erentials and the de�nition of the di�erential of an expression (at least the one that I gave in the hand-

out from January 21) is ultimately about 
urves, this is a very natural operation.

The de�nition

Like the textbook does for one-variable Cal
ulus, I ll de�ne the Riemann integral as a limit of Riemann

sums, although there are more general notions of integration that 
an handle more expressions. The Rie-

mann integral will be su�
ient for pie
ewise 
ontinuous di�erential forms (those de�ned in one or more

pie
es using 
ontinuous operations applied to 
ontinuous quantities and the di�erentials of 
ontinuously

di�erentiable quantities) along pie
ewise 
ontinuously di�erentiable 
urves (those with parametrizations

de�ned in one more pie
es using 
ontinuously di�erentiable operations applied to the parameter).

So, suppose that we have a di�erential form α written using the variables R = (x, y, . . .) and their

di�erentials, and a 
urve in the same number of dimensions, given by some parametrization fun
tion C

whose domain is a 
losed interval [a, b]. Then we 
an try to integrate α along the 
urve where R = C(t),
by de�ning the integral w

R=C(t)
α.

Given any way of dividing the interval [a, b] into a partition a = t0 ≤ t1 ≤ · · · ≤ tn−1 ≤ tn = b (with

n subintervals) and tagging this partition with n values ck with tk−1 ≤ ck ≤ tk for k from 1 to n (this is

exa
tly the kind of partition 
onsidered in one-variable Cal
ulus, as on pages 302�304 of the textbook),

there is a Riemann sum

n
∑

k=1

α| R=C(ck)

dR=C(tk)−C(tk−1)
.

That is, on the kth subinterval, we evaluate the form α at the point through whi
h the 
urve passes at

time ck within that subinterval along the ve
tor from where the 
urve is at the beginning of the subin-

terval to where it is at the end of the subinterval. If we require that the magnitude of this ve
tor be less

than δ and take the limit as δ → 0+, then this limit (if it exists) is the value of the integral. And there is

a theorem that it does exist, at least if α is pie
ewise 
ontinuous and C is pie
ewise 
ontinuously di�er-

entiable (and sometimes otherwise); I don t know a ni
e proof of this dire
tly, but you 
an prove that it

exists be
ause the pra
ti
al 
al
ulation method on page 2 works.

There is now another ni
e theorem, that the value of this integral does not depend on the parametriza-

tion of the 
urve, at least not very mu
h. That is, if φ is a fun
tion in the ordinary sense (a real-valued

fun
tion of one real variable), then C ◦ φ is another parametrized 
urve; if φ is one-to-one and in
reas-

ing (so that we travel along the 
urve in the same dire
tion without repetition) and its range lies entirely

within the domain of C (so that we 
over the entire 
urve), then the theorem is that

r
R=C(t)

α =
r
R=(C◦φ)(t)

α.

The proof is that any Riemann sum for C is also a Riemann sum for C ◦ φ; the same points C(tk) and
C(ck) o

ur in the same order, just at di�erent values of the parameter. So the Riemann integrals, whi
h

are the limits of these Riemann sums, must also be the same.

For this reason, we usually don t spe
ify a parametrized 
urve in the notation at all. Instead, we spe
-

ify an oriented 
urve, whi
h is anything that 
ould be given as a parametrized 
urve, keeping tra
k of

whi
h dire
tion we travel along the 
urve (this is the orientation of the 
urve) but otherwise ignoring the

parametrization.
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Evaluating integrals on 
urves

The pra
ti
al method of evaluating integrals on 
urves is to pi
k any 
onvenient parametrization (prefer-

ably one that is 
ontinuously di�erentiable) and put everything in terms of that parameter. For example,

to integrate 2x dx+ 3xy dy along the top half of the 
ir
le x2 + y2 = 4, oriented 
ounter
lo
kwise, try the

parametrization where x = 2 cos t, y = 2 sin t, and 0 ≤ t ≤ π. Then dx = −2 sin t dt and dy = 2 cos t dt, so
the value of the integral is

w
x2+y2=4, y≥0

dx≤0

(2x dx+ 3xy dy) =
w π

t=0

Ä

2(2 cos t)(−2 sin t dt) + 3(2 cos t)(2 sin t)(2 cos t dt)
ä

=
w π

t=0
(−8 sin t cos t+ 24 sin t cos2 t) dt = 16.

(You 
an do this last integral with the substitution u = cos t.) I ve des
ribed the 
urve of integration with

an equation (of a 
ir
le) and an inequality (to get the top half only) and oriented it by saying that x is

always de
reasing (so that dx is always negative), but usually people write that all out to the side some-

where, 
all the resulting oriented 
urve C (for example), and write simply

r
C
.

The reason why this gives the 
orre
t result is that any Riemann sum for the integral involving t in-

volves almost the same 
al
ulations as a Riemann sum for the integral along the 
urve. The only di�er-

en
e is that the integral involving t looks at the point from the middle of ea
h subinterval to handle the

di�erentials, whereas as the integral of the 
urve looks at the points on ea
h end of the subinterval. But in

the limit, all of these points approa
h ea
h other, and the result is the same. (There is another slight 
om-

pli
ation be
ause the integral involving t takes a limit as the 
hange in t goes to 0, while the integral along
the 
urve takes a limit as the magnitude of the 
hange in position goes to 0. However, these are the same

be
ause the parametrization is 
ontinuous. If you 
an 
al
ulate dx and dy at all, then the parametrization

must be di�erentiable and so de�nitely 
ontinuous.)

You should be able to visualize this example geometri
ally well enough to see that the answer would

have to be positive. The term 2x dx should 
ompletely 
an
el, be
ause the right half of the 
urve exa
tly

mirrors the left half, with dx the same on both halves (always negative be
ause of movement to the left)

but x being the opposite on the two halves (�rst positive, then negative). On the other hand, the term

3xy dy will be negative on both sides; while y is always positive (above the horizontal axis), x and dy are

both positive on the right half (right of the verti
al axis and moving upwards) and both negative on the

left half (left of the axis and moving downwards), making for a positive produ
t everywhere.

If you are asked to integrate a ve
tor �eld F along an oriented 
urve, then they really want you to in-

tegrate the di�erential form F(x, y) · 〈dx, dy〉, or more generally F(R) · dR, where R is (x, y) or (x, y, z).
If you write r for the ve
tor R−O (where O is the origin (0, 0) or (0, 0, 0)), then dR = dr, and this is the

reason for the traditional notation

r
C
F · dr, whi
h is used in the textbook. You may also see

r
C
F ·T ds,

where ds is the ds that appears at the very bottom of this page and T is de�ned to be dr/ds. This is usu-
ally 
ompletely pointless; if you see T ds, just think of it as dr.

For example, to integrate 〈2x, 3xy〉 along the same semi
ir
le as in the previous example (with the

same orientation), you do exa
tly the same integral as in the previous example. This is be
ause

〈2x, 3xy〉 · 〈dx, dy〉 = 2x dx+ 3xy dy,

so w
C
〈2x, 3xy〉 · dr =

w
C
(2x dx+ 3xy dy) = 16

as before. Sin
e the ve
tor 〈2x, 3xy〉 points to the right on the right side and to the left on the left side,

while we move along the 
urve 
onsistently to the left, this suggests that the horizontal 
omponent should


an
el. However, sin
e this ve
tor points upwards where we move upwards along the 
urve (on the right

side) and points downwards where we move downards along the 
urve (on the left side), this suggests a

positive 
ontribution from the verti
al 
omponent. So as in the �rst example, you should expe
t a positive

result even before doing the 
al
ulation.

If you are asked to integrate a fun
tion f along a 
urve, then they really want you to integrate the

di�erential form f(x, y)
√

dx2 + dy2, or more generally f(R) |dR|. It s traditional to write ds for |dR| (or

Page 2 of 3



|dr|, whi
h is the same), but it s important that there is no quantity s de�ned everywhere that ds is the

di�erential of. To emphasize this, you 
an write d̄s; `d̄' is a symbol that some people use when something

is traditionally written with `d' but is not really a di�erential.

As long as the di�erentials dx et
 appear only in d̄s, then the result of the integral is independent

of orientation, be
ause repla
ing dx with −dx (as would happen upon reversing the orientation) doesn t


hange d̄s. For this reason, you 
an integrate a fun
tion along an unoriented 
urve. When parametrizing,

everything will 
ome out using |dt| instead of dt, but as long as the integral involving t has its bounds set

up so that t is in
reasing, then dt is positive and so |dt| = dt, after whi
h you 
an integrate normally.

For example, to �nd the length of the semi
ir
le in the previous example, you get

d̄s =
»

dx2 + dy2 =
»

(−2 sin t dt)
2
+ (2 cos t dt)

2
=
»

(4 sin2 t+ 4 cos2 t) dt2 =
√
4
√
dt2 = 2 |dt|.

Thus, the length is w
x2+y2=4, y≥0

d̄s =
w π

t=0
2 |dt| =

w π

t=0
2 dt = 2π.

If for some reason you set the integral up ba
kward, then dt would be negative and so |dt| would be −dt,
and the result would be the same in the end:

w
C
d̄s =

w 0

t=π
2 |dt| =

w 0

t=π
2(−dt) = −

w 0

t=π
2 dt = −(−2π) = 2π.

(But it s simpler to always set things up so that the parameter is in
reasing.)

Pseudooriented 
urves

In 2 dimensions, you ll sometimes be asked to integrate a ve
tor �eld a
ross a 
urve rather than along it

as usual. Although there is no standard notation for this, you 
an write it as as F× dr in analogy with

the usual F · dr. The book sometimes writes F · n ds, where n = ×T and dr = T ds, but this just results
in F · ×dr = F× dr. This is the 2-dimensional 
ross produ
t, so the result is still a s
alar. Te
hni
ally,

however, it is a
tually a pseudos
alar, be
ause whi
h s
alar it is depends on how you orient the plane

(
ounter
lo
kwise as is the 
onvention or 
lo
kwise instead). Similarly, spe
ifying a dire
tion a
ross a 
urve

really gives the 
urve a pseudoorientation, be
ause it only de�nes a dire
tion along the 
urve (an orien-

tation) by pi
king a 
onvention about how these dire
tions 
orrespond. In pra
ti
e, we orient the plane


ounter
lo
kwise, meaning that 
ounter
lo
kwise 
ross produ
ts are positive, the rotation ×v of a ve
tor v

is obtained by rotating it 
lo
kwise, a dire
tion a
ross a 
urve turns into a dire
tion along it by rotation


ounter
lo
kwise, and a dire
tion along a 
urve turns into a dire
tion a
ross it by rotating 
lo
kwise. But

if you 
onsistently did all of these the other way, then the results of all integrals would be the same.

For example, to integrate 〈2x, 3y〉 a
ross our semi
ir
le, now pseudooriented upwards, integrate

〈2x, 3xy〉 × 〈dx, dy〉 = 2x dy − 3xy dx,

and use the orientation 
ounter
lo
kwise from upwards, whi
h is leftwards (the same as in �rst example):

w
x2+y2=4, y≥0

dy≥0

〈2x, 3xy〉 × dr =
w

x2+y2=4, y≥0
dx≤0

(2x dy − 3xy dx)

=
w π

t=0

Ä

(2(2 cos t)(2 cos t dt))− 3(2 cos t)(2 sin t)(−2 sin t dt)
ä

=
w π

t=0
(8 cos2 t+ 24 sin2 t cos t) dt = 4π.

Sin
e the ve
tor 〈2x, 3xy〉 points to the right where we 
ross the 
urve to the right (on the right side) and

points to the left where we 
ross to the left, this suggests that the horizontal 
omponent should give a pos-

itive result. However, sin
e this ve
tor points upwards on the right side and downwards on the left side,

while we 
ross the 
urve 
onsistently upwards, this suggests that the verti
al 
omponent should 
an
el. So

you should again expe
t a positive result before doing the 
al
ulation.
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