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Di�erentials

I like to do 
al
ulus using di�erentials. Di�erentials and the related di�erential forms are often used in

appli
ations, espe
ially (but not only) to physi
s. The o�
ial textbook originally 
overs di�erentials in-


ompletely and only in one minor appli
ation; it then uses them again for integration, primarily as a nota-

tional 
onvenien
e. But they are useful for mu
h more. Now is the time to explain what they are.

Notation and terminology

If u is a variable quantity, then du is the di�erential of u. You 
an think of du as indi
ating an in�nite-

ly small (in�nitesimal) 
hange in the value of u, or the amount by whi
h u 
hanges when an in�nitesimal


hange is made. A pre
ise de�nition appears later in these notes.

Note that du is not d times u, and du is also not exa
tly a fun
tion of u. Rather, u (being a variable

quantity) should itself be a fun
tion of some other quantities x, y, . . ., and du is also a fun
tion of some

quantities; so d is an operator : something that turns one fun
tion into another fun
tion. (However, an

expression like v du does involve multipli
ation: it is the quantity v multiplied by the di�erential of u.)

We often divide one di�erential by another; for example,

dy

dx
is the result of dividing the di�erential

of y by the di�erential of x. The textbook introdu
es this notation early to stand for the derivative of y

with respe
t to x, and indeed it is that; but what the book doesn t tell you is that

dy

dx
literally is dy divid-

ed by dx. Unfortunately,
d2y

dx2
, the se
ond derivative, is not literally d2y = d(dy) divided by dx2 = (dx)

2
;

for this reason, I prefer the notation

Å

d

dx

ã2

y =
d

dx

Å

d

dx
y

ã

=
d(dy/dx)

dx
.

Di�erentials and the rules of di�erentiation

One sometimes sees the Chain Rule expressed as

dy

dx
=

dy

du
· du
dx

,

but the Chain Rule is a nontrivial fa
t that 
annot be proved by simply 
an
elling fa
tors. I prefer to

state the Chain Rule as

df(u) = f ′(u) du;

the point is that the same fun
tion f ′
appears regardless of whi
h argument u we use.

Even this is more abstra
t than how the Chain Rule is applied. For example, suppose that you have

dis
overed (say from the de�nition as a limit) that the derivative of f(x) = sinx is f ′(x) = cosx. Sin
e

f ′(x) may be de�ned as

df(x)

dx
, this derivative 
an be expressed in di�erential form without even bother-

ing to name the fun
tions involved:

d(sinx) = cosx dx.

On
e you know this, you know something even more general:

d(sinu) = cosu du

for any other di�erentiable quantity u; the Chain Rule is the power to derive this equation from the previ-

ous one. Thus, using u = x2
(to 
ontinue the example),

d
Ä

sin (x2)
ä

= cos (x2) d(x2) = cos (x2)(2x dx) = 2x cos (x2) dx.

You may now divide both sides of this equation by dx if you wish, but the basi
 
al
ulation involves only

rules for di�erentials.
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For the re
ord, here are the rules for di�erentiation that you should already know, expressed using

di�erentials:

• The Constant Rule: dK = 0 if K is 
onstant.

• The Sum Rule: d(u+ v) = du+ dv.
• The Translate Rule: d(u+ C) = du if C is 
onstant.

• The Di�eren
e Rule: d(u− v) = du− dv.
• The Produ
t Rule: d(uv) = v du+ u dv.
• The Multiple Rule: d(ku) = k du if k is 
onstant.

• The Quotient Rule: d

Å

u

v

ã

=
v du− u dv

v2
.

• The Power Rule: d(un) = nun−1 du if n is 
onstant.

• The Exponentiation Rule: d(expu) = expu du (where expu means eu).

• The Logarithm Rule: d(lnu) =
du

u
.

• The Sine Rule: d(sinu) = cosu du.
• The Cosine Rule: d(cosu) = − sinu du.
• The Tangent Rule: d(tanu) = sec2 u du.
• The Cotangent Rule: d(cotu) = − csc2 u du.
• The Se
ant Rule: d(secu) = tanu secu du.
• The Cose
ant Rule: d(cscu) = − cotu cscu du.

• The Ar
sine Rule: d(asinu) =
du√
1− u2

(where asinu means sin−1 u).

• The Ar

osine Rule: d(acosu) = − du√
1− u2

.

• The Ar
tangent Rule: d(atanu) =
du

u2 + 1
.

• The Ar

otangent Rule: d(acotu) = − du

u2 + 1
.

• The Ar
se
ant Rule: d(asecu) =
du

|u|
√
u2 − 1

.

• The Ar

ose
ant Rule: d(acscu) = − du

|u|
√
u2 − 1

.

• The Chain Rule: d(f(u)) = f ′(u) du if f is a fun
tion of one variable that s di�erentiable at u.

• The First Fundamental Theorem of Cal
ulus: d
Ä

w
v

u

f(t) dt
ä

= f(v) dv − f(u) du if f is a fun
tion of

one variable that s 
ontinuous between u and v.

The last one might not be familiar to you in su
h a general form, but it 
an be handy.

Noti
e that every one of the rules above turns the di�erential on the left into a sum of terms (possibly

only one term, or none in the 
ase of the Constant Rule), ea
h of whi
h is an ordinary expression multi-

plied by a di�erential (or something algebrai
ally equivalent to this). You should re
ognize this as a kind

of di�erential form; more pre
isely, these are exterior di�erential 1-forms or linear di�erential 1-forms.

Here is an example of how to use the rules, step by step, to �nd a di�erential. Spe
i�
ally, I ll �nd the

di�erential of x2y + sin (z2). (In one-variable 
al
ulus, you might 
onsider this if x, y, and z all happen to

be fun
tions of some other variable t; but in multivariable 
al
ulus, the same 
al
ulation will apply even

when the variables x, y, and z are all independent.)

d
Ä

x2y + sin (z2)
ä

= d(x2y) + d
Ä

sin (z2)
ä

= y d(x2) + x2 dy + cos (z2) d(z2)

= y(2x2−1 dx) + x2 dy + cos (z2)(2z2−1 dz)

= 2xy dx+ x2 dy + 2z cos (z2) dz.
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Here I ve used, in turn, the sum rule, the produ
t and sine rules (one in one term and the other in the oth-

er term), the power rule (in two pla
es), and �nally some algebra to simplify. Of 
ourse, you 
an usually

do this mu
h faster; with pra
ti
e, you 
an jump immediately to the se
ond-to-last line by applying the

next rule whenever one rule results in a di�erential; then you only need one more step to simplify it alge-

brai
ally. Often you 
an even do some of the algebra in your head (like simplifying 2x2−1
to 2x).

The de�nition

It s time to a
tually give a de�nition of du. Sin
e d is an operator, it must be applied to a fun
tion; so we

should have u = f(R) (by whi
h I mean u = f(x, y), u = f(x, y, z), or whatever) for some fun
tion f . Re-


all that the fun
tion f is di�erentiable at the point P if there exists a row ve
tor ∇f(P ) su
h that, for

every di�erentiable parametrized 
urve C and real number a, if C(a) exists and equals P , then the 
om-

posite fun
tion f ◦ C is di�erentiable at a and furthermore (f ◦ C)
′

(a) = ∇f(P ) · C ′(a). Note that ∇f is

a ve
tor �eld de�ned wherever f is di�erentiable, 
alled the gradient of f . (The symbol `∇' is variously

pronoun
ed `Atled', `Nabla', and `Del'; people also write grad f for ∇f .)

If u = f(R) and f is di�erentiable, then we write

du = ∇f(R) · dR = ∇f(R) · dr,

where r is R minus the origin, as usual. If you think of ∇f as a derivative of f , then this is simply taking

the Chain Rule as a de�nition. There are two good things about this de�nition of du. First of all, all of
the usual rules of di�erentiation are a
tually true of it; be
ause the de�nition ultimately refers to ordinary

fun
tions, we 
an prove ea
h rule in the list on page 2 by using the 
orresponding result for ordinary fun
-

tions. The other good thing about this de�nition is that when we evaluate a di�erential at a given point

and ve
tor, then the result is one of the derivatives (f ◦ C)
′

(a) that appear in the de�nition above.

Spe
i�
ally, �xing a point P and a ve
tor v, let C(t) = P + tv; then C is a di�erentiable 
urve with

C(0) = P and C ′(0) = v, so

du| R=P

dR=v

= ∇f(P ) · v = ∇f
Ä

C(0)
ä

· C ′(0) = (f ◦ C)
′

(0)

when u = f(R). If v happens to be a unit ve
tor (a dire
tion), then ∇f(P ) · v is 
alled the dire
tion-

al derivative of f at P in the dire
tion of v. In general, the dire
tional derivative in the dire
tion of v

is ∇f(P ) · v/|v|; however, some people use the term `dire
tional derivative' for ∇f(P ) · v in the gener-

al 
ase (sin
e it s important but there is no standard name for it), so be 
areful. In parti
ular, the di-

re
tional derivatives parallel to the 
oordinate axes �that is ∇f(P ) · i, ∇f(P ) · j, and (in 3 dimensions)

∇f(P ) · k� are 
alled the partial derivatives of f at P .

Partial derivatives

The partial derivatives 
an be viewed from another perspe
tive. If f(x, y, z) (for example) 
an be expressed

using the usual operations (and possibly even if it 
annot), then its di�erential will 
ome out as

df(x, y, z) = f1(x, y, z) dx+ f2(x, y, z) dy + f3(x, y, z) dz

for some fun
tions f1, f2, and f3. These fun
tions are the partial derivatives of f . Sin
e subs
ripts 
an

be used for many things, a better notation for f1, f2, and f3 is D1f , D2f , and D3f (respe
tively); 
om-

pare the notation Df for f ′
that is sometimes used in single-variable Cal
ulus. For example, if f(x, y, z) =

x2y + sin (z2), then

df(x, y, z) = d
Ä

x2y + sin (z2)
ä

= 2xy dx+ x2 dy + 2z cos (z2) dz

(as I 
al
luated earlier), so

D1f(x, y, z) = 2xy,

D2f(x, y, z) = x2
, and

D3f(x, y, z) = 2z cos (z2).
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If instead we write u for f(x, y, z), then we have a di�erent notation for the 
oe�
ients on the di�er-

entials:

du =

Å

∂u

∂x

ã

y,z

dx+

Å

∂u

∂y

ã

x,z

dy +

Å

∂u

∂z

ã

x,y

dz.

So for example, if u = x2y + sin (z2), then

du = d
Ä

x2y + sin (z2)
ä

= 2xy dx+ x2 dy + 2z cos (z2) dz

again, so

Å

∂u

∂x

ã

y,z

= 2xy,

Å

∂u

∂y

ã

x,z

= x2
, and

Å

∂u

∂z

ã

x,y

= 2z cos (z2).

This

Å

∂u

∂x

ã

y,z

is the partial derivative of u with respe
t to x, �xing y and z, whi
h tells you how mu
h

u 
hanges relative to the 
hange in x as long as y and z remain the same. All of the information in this

notation is ne
essary to avoid ambiguity, but in pra
ti
e people usually write simply

∂u

∂x
, 
all this simply

the partial derivative of u with respe
t to x, and expe
t you to guess from 
ontext what other variables

are remaining �xed.

Of 
ourse, people also mix notation for f with notation for u, writing Dxf , fx,
∂f

∂x
, and so on, as well

as ux, u1, D1u, and so on. Te
hni
ally, notation with numbers makes sense only when applied to the name

of a fun
tion, be
ause the arguments of that fun
tion 
ome in a spe
i�
 order; while notation referring to

the variables used does not make sense when applied to the name of a fun
tion, sin
e one 
ould use any

variables as the arguments of the fun
tion (although it does make sense when applied to an expression

su
h as f(x, y, z), in whi
h these variables have been spe
i�ed). In pra
ti
e, however, people usually use

the variables x, y, z in that order; then there is no 
onfusion.

If f is a fun
tion of (say) 3 variables, then the de�nition of di�erential states that

df(x, y, z) = ∇f(x, y, z) · d(x, y, z) = ∇f(x, y, z) · 〈dx, dy, dz〉;

meanwhile, the de�nition of partial derivative above states that

df(x, y, z) = D1f(x, y, z) dx+D2f(x, y, z) dy +D3fD(x, y, z) dz

= 〈D1f(x, y, z), D2f(x, y, z), D3f(x, y, z)〉 · 〈dx, dy, dz〉.

In other words,

∇f(x, y, z) = 〈D1f(x, y, z), D2f(x, y, z), D3f(x, y, z)〉 =
≠

∂f(x, y, z)

∂x
,
∂f(x, y, z)

∂y
,
∂f(x, y, z)

∂z

∑

.

Put more simply,

∇f = 〈D1f,D2f,D3f〉,
or even

∇ = 〈D1, D2, D3〉.
The value of this is that the gradient has the same information as the di�erential. The di�erential is the

more useful 
on
ept for 
al
ulation, although the gradient appears in the de�nition of di�erentiability and,

if we have a geometri
 notion of length available to allow us to think of row ve
tors (su
h as the gradient)

as the same as 
olumn ve
tors (the usual ones, going between points), then the gradient is easier to visual-

ize.
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