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Di�erential forms are, broadly speaking, expressions that may have di�erentials in them. They have many

uses in modern s
ien
e and engineering, even though they are not traditionally 
overed expli
itly in math


lass. They are 
overed somewhat, however, and they are there whenever you di�erentiate or integrate,

even if you don t re
ognize them. They are espe
ially prominent in multivariable 
al
ulus, and I want to

bring them to your attention; you ll �nd that symbols that otherwise seem meaningless or merely mnemon-

i
 
an be understood literally (sometimes with slight 
hanges) as di�erential forms.

Examples

The most basi
 examples of di�erential forms are di�erentials su
h as dx and dy. In general, if u is any

quantity that might 
hange, then du is intended to be a related quantity whose value is an in�nitely small


hange in u, or rather the amount by whi
h the value of u 
hanges when an in�nitely small (or arbitrarily

small) 
hange is made. (I will make this pre
ise later on.)

Besides the di�erentials themselves, di�erential forms 
an be 
onstru
ted by applying arithmeti
 oper-

ations, so dx+ dy, dx dy, and
√
dx are all di�erential forms. In all of these expressions, we adopt an order

of operations in whi
h the di�erential operator d is applied before any arithmeti
 operator; for example,

dx2
means (dx)

2
, not d(x2) (whi
h is du when u = x2

). Additionally, we 
an in
lude ordinary quantities

in these expressions, so x+ dx, 3 dx+ x2 dy + ey dz, and x ln (y/dz) are also di�erential forms. We 
an al-

so use di�erentials of di�erentials, su
h as d2x (the di�erential of dx), although we won t need su
h higher-

order di�erentials in this 
ourse. Besides all of this, any ordinary expression 
ounts as a di�erential form

in a degenerate way; thus, x, y2, and 2xy3 are also di�erential forms (of order zero).

Some di�erential forms are more useful than others. Of those listed above, besides the di�erentials

and the non-di�erential quantities, the ones most likely to appear in a real problem are dx+ dy and 3 dx+
x2 dy + ey dz. These 
onsist of any number of terms, ea
h of whi
h is the produ
t of an ordinary quantity

(possibly 1) and the di�erential of an ordinary quantity. Di�erential forms with this property are most


ommonly found in pra
ti
e. We will use other di�erential forms, su
h as 3x |dy| and
√

dx2 + dy2; how-
ever, you might be able to see how even these forms are di�erential of degree 1 in a sense similar to the

degree of a polynomial.

All of the examples so far are di�erential forms of rank 1; there are also di�erential forms of higher

rank, su
h as dx ∧ dy, whi
h are written using a new operation, the wedge produ
t. (Sin
e the wedge prod-

u
t is a kind of multipli
ation, this example is not only rank 2 but also degree 2.) We will not use these

until later; these notes are only about di�erential forms of rank 1, or 1-forms for short. (Ordinary quan-

tities have rank 0; this is why they are useful despite not having degree 1. In general, the useful di�eren-

tial forms have the same degree as their rank, and people who study di�erential forms most often study

the so-
alled exterior di�erential forms, for whi
h the degree and rank automati
ally mat
h. However,

there are many di�erential forms, su
h as 3x |dy|, whi
h don t 
ount as exterior forms but whi
h we will

still need in this 
ourse. That is the main reason why I m introdu
ing a very general 
on
ept of di�erential

form to begin with, even though we really only need a few spe
ial 
ases.)

Evaluating di�erential forms

In this 
lass, we generally assume that any ordinary quantity (that is any 0-form) is a fun
tion of 2 or 3
ordinary variables, R = (x, y) or R = (x, y, z). Thus, we evaluate ordinary quantites (0-forms) by spe
i-

fying spe
i�
 values for the variables that 
omprise R. For example, to evaluate u = x2 + xy when x = 2
and y = 3, we may write

u|R=(2,3) = (x2 + xy)|(x,y)=(2,3) = (2)
2
+ (2)(3) = 10.

To evaluate a di�erential form, we need not only a point (a value of R) but also a ve
tor (a value

of dR). So for example, to evaluate α = 3dx+ x2 dy + ey dz when x = 2, y = 3, z = 4, dx = 0.05, dy =
−0.01, and dz = 0, we may write

α|R=(2,3,4),dR=〈0.05,−0.01,0〉 = (3 dx+ x2 dy + ey dz)|(x,y,z)=(2,3,4),〈dx,dy,dz〉=〈0.05,−0.01,0〉

= 3(0.05) + (2)
2
(−0.01) + e3(0) = 0.11.
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(Di�erential forms are often denoted with Greek letters, but they don t have to be.) We say that α has

been evaluated at the point R = (2, 3, 4) along the ve
tor dR = 〈0.05,−0.01, 0〉. (The 
omponents of dR
don t need to be small, sin
e the de�nition is purely formal, but in appli
ations that s what matters; after

all, dR is supposed to be a small 
hange in position.)

For higher-order di�erential forms (those that involve higher-order di�erentials), we need an addition-

al ve
tor d2R = 〈d2x, d2y〉, et
. In general, we may need an entire 
urve through a given point, but we

won t need that level of generality in this 
ourse!

Di�erential forms as ve
tors

A di�erential form α = M dx+N dy +O dz may be viewed as a dot produ
t α = 〈M,N,O〉 · 〈dx, dy, dz〉 =
V · dR. For example, if α = 3dx+ x2 dy + ey dz, then α = 〈3, x2, ey〉 · dR; 
onversely, if V = 〈3, x2, ey〉,
then

V · dR = 〈3, x2, ey〉 · 〈dx, dy, dz〉 = 3dx+ x2 dy + ey dz.

We 
an re
over V from α formally by evaluating α when dR is 〈i, j〉 or 〈i, j,k〉, but there s probably no

need to think about that expli
itly.

Even in 
ir
umstan
es where it makes no sense to interpret a 
hange in the values of (x, y, z) as a ve
-

tor in the geometri
 sense (with length and dire
tion), in whi
h 
ase dot produ
ts involving them general-

ly have no meaning, it is traditional to write di�erential forms in this way and to fo
us on V rather than

on α as the obje
t of study. In this 
ase, one sometimes refers to V as a row ve
tor, distinguishing it from

the usual notion of ve
tor as a 
hange in position, whi
h in this 
ontext is 
alled a 
olumn ve
tor. (This

terminology 
omes from matrix theory, but that really doesn t matter for us.) Row ve
tors may meaning-

fully be added together and multiplied by s
alars, but the only other operation involving them is multipli-


ation by 
olumn ve
tors using the dot produ
t. In parti
ular, adding a row ve
tor to a point to get a new

point makes no sense without a geometri
 notion of length; only 
olumn ve
tors 
an be used in this way.

Regardless of whether V has geometri
 signi�
an
e as a ve
tor, it 
an be helpful to visualize it as

one. When 
al
ulations with a row ve
tor need to be performed, however, ultimately it is the di�erential

form α = V · dR that matters. It s more 
ommon to see V · dr; the ve
tor r = R−O (where O is (0, 0)
or (0, 0, 0), the origin of the 
oordinate system) satis�es dr = dR (sin
e O is 
onstant). Sometimes V · dr
is even regarded as merely a mnemoni
 notation, but it 
an be taken literally, just as dy/dx (whi
h is al-

so sometimes regarded as merely mnemoni
) 
an be viewed literally as the result of a division of di�eren-

tials. In any 
ase, people do write V · dr, so it 
an be ni
e to know what it means! In the textbook, they

sometimes write dr = T ds, where ds (whi
h is not really the di�erential of anything) is the magnitude

ds = |dr| and T is the unit ve
tor in the dire
tion of dr. This is sometimes useful when thinking about

things geometri
ally, but it s not ne
essary for purposes of 
al
ulation.

In 2 dimensions, we 
an also take 
ross produ
ts, using the rule 〈a, b〉 × 〈c, d〉 = ad− bc. For example,

if V = 〈x, y〉, then
V × dr = 〈x, y〉 × 〈dx, dy〉 = x dy − y dx.

However, this requires that 
hanges in x and y make sense as having a geometri
 length even when V

is regarded as merely a row ve
tor, so it doesn t 
ome up as often. If you use ×〈c, d〉 = 〈d,−c〉, so that

u× v = u · ×v, then you 
an write V × dr as V · ×dr; the book sometimes writes this as V · n ds, where
ds = |×dr| = |dr| again, and now n = ×T is the dire
tion perpendi
ular and 
lo
kwise from dr. Again,
sometimes this is useful when thinking about the geometry, but you don t need it for doing 
al
ulations.
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