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Exterior di�erential forms

All of the integrals in vetor alulus an be thought of as integrals of di�erential forms of one sort or an-

other. Sine integration of di�erential forms generalizes in ways that integration of vetor �elds annot

(some of whih are important in appliations, espeially to physis), it s useful to be able to think about

di�erential forms. Furthermore, you then need fewer formulas for the various derivatives of vetor �elds

and for the theorems that relate derivatives to integrals.

General priniples

Here I spell out the general priniples of integrating di�erential forms, but it s really the examples that

follow that will make the ideas lear.

There are three sorts of di�erential forms that we ll need: exterior forms, pseudoexterior forms, and

absolute forms. The exterior forms are the most straightforward kind and the simplest to alulate with.

The pseudoexterior forms are essentially the same as exterior forms, exept that their sign is determined

by using the right-hand rule; if you used the left-hand rule instead, then the pseudoexterior forms would

have opposite sign but the results of all integrals would stay the same. (In general, you an put `pseudo'

before the name of a onept to get the name of a related onept where the sign depends on the right-

hand rule. It is sometimes handy to keep trak of whether something is pseudo or not; for example, if you

ever add something pseudo to something nonpseudo, then you know that you re making a mistake, muh

as you would be if you added quantities measured in di�erent units. However, you an ignore the di�er-

ene in alulations as long as you always use the right-hand rule.) The absolute forms are least used in

appliations; they typially arise by taking the absolute value of another form (and then possibly multi-

plying by a salar quantity). However, they are still important, sine lengths, areas, and volumes may be

found by integrating absolute forms. (If you read other material on di�erential forms, the exterior ones are

the most ommonly studied, and people will often leave out the word `exterior'. Then the pseudoexterior

forms are just alled `pseudoforms', and there is no ommon name for the absolute forms at all; `absolute'

is a term for them that I made up. On the other hand, there are yet other kinds of di�erential forms be-

sides all of these.)

You integrate these forms along various regions in spae, alled manifolds. These manifolds an or-

respondingly be oriented, pseudooriented, or unoriented. Now it s the unoriented manifolds that are the

simplest; they are just shapes of onsistent dimension. With an oriented manifold, you also make a hoie

of whih diretion to go along the manifold; with a pseudooriented manifold, you instead make a hoie

of whih diretion to go around or aross the manifold. You integrate exterior forms on oriented mani-

folds, pseudoexterior forms on pseudooriented manifolds, and absolute forms on unoriented manifolds. (If

you read other material, the pseudooriented manifolds are sometimes also alled `transversely oriented'.)

People also talk about integrating on hains: a hain is just a list of manifolds, eah with a real number

(its weight); to integrate a di�erential form on a hain, you multiply the integral on eah manifold by that

manifold s weight and then add these produts. You ll see some simple examples of hains when we get to

the Stokes Theorem below.

To alulate integrals, you want to parametrize your manifolds; you ll have one or more variables

t, u, v, . . . (the parameters), running over some domain of values, and a point-valued funtion (the parame-

trization) of those variables speifying whih point in spae orresponds to whih values of the parameters.

Running this funtion over the entire domain of parameters arves out the manifold. (You ll want your

parametrization funtions to be ontinuously di�erentiable, in order to avoid worrying about whether the

integrals are de�ned. For the same reason, the forms themselves should be ontinuous, and the domains

of the paremetrizations should be ompat, that is losed and bounded. The integrals may be de�ned in

other ases, but they are guaranteed to exist if these onditions are met.)

The number of parameters used is the dimension of the manifold. This must math the rank of the

di�erential form, whih is the number of di�erentials in eah term of the form. These di�erentials are om-

bined using the wedge produt , ∧. A key property of the wedge produt is that it is antiommutative be-

tween di�erentials; that is,

dx ∧ dy = −dy ∧ dx
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(muh like the ross produt of vetors). This also means that dx ∧ dx = 0. However, for absolute forms,

you take the absolute value of the wedge produt; then |dx ∧ dy| = |−dy ∧ dx| = |dy ∧ dx|, while |dx ∧ dx| =
|0| = 0 still.

To alulate the integral, you use the parametrization to express the oordinates x, y, . . . in terms of

the parameters t, u, v, . . ., then di�erentiate this to get dx, dy, . . . in terms of dt, du, dv, . . ., so that the in-

tegral is entirely in terms of the parameters. You then express this as an iterated integral, heking the

orientation or pseudoorientation and putting a minus sign out front if it goes the wrong way.

Summary of the integrals

This setion repeats what we ve already done, but shows expliitly how every integral that you deal with

in this ourse is either the integral of an exterior form on an oriented manifold, the integral of a pseudoex-

terior form on a pseudooriented manifold, or the integral of an absolute form on an unoriented manifold.

Curves

A urve C is a manifold of dimension 1. So it may be parametrized by a funtion (whih we ll assume is

ontinuously di�erentiable) that takes one variable t to a point R = (x, y, . . .). Note that the di�erential
dR = 〈dx, dy, . . .〉 is a vetor; if you write r for the vetor R− (0, 0, . . .), then dR = dr, and dr is the more

usual notation (even though R is the more fundamental onept). When you orient a urve, you spei-

fy whih diretion to travel along the urve; when you pseudoorient a urve in 2 dimensions, you speify

whih diretion to travel aross the urve. (You won t need to pseudoorient a urve in more dimensions in

this lass, although it an be done by speifying diretions around the urve.)

To integrate a vetor quantity F = 〈M,N, . . .〉 along an oriented urve C, you integrate the rank-1
exterior form F · dr:

w
C
F · dr =

w
C
〈M,N, . . .〉 · 〈dx, dy, . . .〉 =

w
C
(M dx+N dy + · · ·) =

w
C

Å

M
dx

dt
+N

dy

dt
+ · · ·

ã

dt

or w
C
F · dr =

w
C
F ·

dr

dt
dt =

w
C
〈M,N, . . .〉 ·

≠

dx

dt
,
dy

dt
, . . .

∑

dt =
w
C

Å

M
dx

dt
+N

dy

dt
+ . . .

ã

dt.

(There s no need to learn all of these formulas; just put everything in terms of t and push through.) To

math orientations, make sure that the diretion along the urve as t inreases is the same diretion as the

urve s orientation; or if not, then put a minus sign out front.

To integrate a vetor quantity F = 〈M,N〉 aross a pseudooriented urve C in 2 dimensions, you inte-

grate the rank-1 pseudoexterior form F× dr (where the ross produt in 2 dimensions produes a salar,

or rather a pseudosalar sine the sign depends on the right-hand rule):

w
C
F× dr =

w
C
〈M,N〉 × 〈dx, dy〉 =

w
C
(M dy −N dx) =

w
C

Å

M
dy

dt
−N

dx

dt

ã

dt

or w
C
F× dr =

w
C
F×

dr

dt
dt =

w
C
〈M,N〉 ×

≠

dx

dt
,
dy

dt

∑

dt =
w
C

Å

M
dy

dt
−N

dx

dt

ã

dt.

To math pseudoorientations using the right-hand rule, make sure that the diretion along the urve as t

hanges is ounterlokwise from the diretion of the urve s pseudoorientation; or if not, then put a minus

sign out front.

To integrate a salar quantity f on an unoriented urve C, you integrate the rank-1 absolute form

f d̄s, where s has no meaning by itself but instead d̄s is the absolute form ‖dr‖:

w
C
f d̄s =

w
C
f ‖dr‖ =

w
C
f ‖〈dx, dy, . . .〉‖ =

w
C
f

»

(dx)
2
+ (dy)

2
+ · · · =

w
C
f

√

Å

dx

dt

ã2

+

Å

dy

dt

ã2

+ · · · |dt|

or

w
C
f d̄s =

w
C
f ‖dr‖ =

w
C
f

∥

∥

∥

∥

dr

dt

∥

∥

∥

∥

|dt| =
w
C
f

∥

∥

∥

∥

≠

dx

dt
,
dy

dt
, . . .

∑

∥

∥

∥

∥

|dt| =
w
C
f

√

Å

dx

dt

ã2

+

Å

dy

dt

ã2

+ · · · |dt|.

Now there is no orientation to math; instead, make sure that t is inreasing, so that |dt| = dt in the inte-

gral; or if not, then put a minus sign out front.
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Surfaes

A surfae S is a manifold of dimension 2, given by a funtion (whih we ll assume is ontinuously dif-

ferentiable) that takes two variables u, v to a point R = (x, y, z, . . .) When you pseudoorient a surfae in

3 dimensions, you speify whih diretion to travel aross the surfae. (You won t need to pseudoorient a

surfae in more dimensions, nor will you need to orient any at all, although again these an be done.)

To integrate a vetor quantity F = 〈M,N,O〉 aross a pseudooriented surfae S in 3 dimensions, you

integrate the rank-2 pseudoexterior form F · d̄S, where S has no meaning by itself, but instead d̄S is the

pseudovetor-valued form 1/2 dr ×̂ dr (whih as a vetor is multiplied by the ross produt and as a di�er-

ential form is multiplied by the wedge produt). This works out to 〈dy ∧ dz, dz ∧ dx, dx ∧ dy〉 (using the

right-hand rule) or ∂r/∂u× ∂r/∂v du ∧ dv:w
S
F · d̄S =

w
S
〈M,N,O〉 · 〈dy ∧ dz, dz ∧ dx, dx ∧ dy〉 =

w
S
(M dy ∧ dz +N dz ∧ dx+O dx ∧ dy)

=
w
S

(

M

Å

∂y

∂u

∂z

∂v
−

∂y

∂v

∂z

∂u

ã

+N

Å

∂z

∂u

∂x

∂v
−

∂z

∂v

∂x

∂u

ã

+O

Å

∂x

∂u

∂y

∂v
−

∂x

∂v

∂y

∂u

ã
)

du ∧ dv

or

w
S
F · d̄S =

w
S
〈M,N,O〉 ·

∂r

∂u
×

∂r

∂v
du ∧ dv =

w
S
〈M,N,O〉 ·

≠

∂x

∂u
,
∂y

∂u
,
∂z

∂u

∑

×

≠

∂x

∂v
,
∂y

∂v
,
∂z

∂v

∑

du ∧ dv

=
w
S

(

M

Å

∂y

∂u

∂z

∂v
−

∂y

∂v

∂z

∂u

ã

+N

Å

∂z

∂u

∂x

∂v
−

∂z

∂v

∂x

∂u

ã

+O

Å

∂x

∂u

∂y

∂v
−

∂x

∂v

∂y

∂u

ã
)

du ∧ dv.

To math pseudoorientations using the right-hand rule, make sure that, as you turn the �ngers of your

right hand from the diretion in whih u hanges towards the diretion in whih v hanges, your thumb

points in the diretion of the surfae s pseudoorientation; or if not, then put a minus sign out front.

To integrate a salar quantity f on an unoriented surfae S, you integrate the rank-2 absolute form

f d̄σ, where σ has no meaning by itself but instead d̄σ is the absolute form ‖d̄S‖:
w
S
f d̄σ =

w
S
f ‖d̄S‖ =

w
S
f ‖〈dy ∧ dz, dz ∧ dx, dx ∧ dy〉‖ =

w
S
f

»

(dy ∧ dz)
2
+ (dz ∧ dx)

2
+ (dx ∧ dy)

2

=
w
S
f

√

Å

∂y

∂u

∂z

∂v
−

∂y

∂v

∂z

∂u

ã2

+

Å

∂z

∂u

∂x

∂v
−

∂z

∂v

∂x

∂u

ã2

+

Å

∂x

∂u

∂y

∂v
−

∂x

∂v

∂y

∂u

ã2

|du ∧ dv|

or

w
S
f d̄σ =

w
S
f ‖d̄S‖ =

w
S
f

∥

∥

∥

∥

∂r

∂u
×

∂r

∂v

∥

∥

∥

∥

|du ∧ dv| =
w
S
f

∥

∥

∥

∥

≠

∂x

∂u
,
∂y

∂u
,
∂z

∂u

∑

×

≠

∂x

∂v
,
∂y

∂v
,
∂z

∂v

∑

∥

∥

∥

∥

|du ∧ dv|

=
w
S
f

√

Å

∂y

∂u

∂z

∂v
−

∂y

∂v

∂z

∂u

ã2

+

Å

∂z

∂u

∂x

∂v
−

∂z

∂v

∂x

∂u

ã2

+

Å

∂x

∂u

∂y

∂v
−

∂x

∂v

∂y

∂u

ã2

|du ∧ dv|.

Again there is no orientation to math; instead, make sure that u and v are both inreasing, so that |du ∧ dv| =
du dv in the integral; or if not, then put a minus sign out front for eah one that doesn t.

Area integrals

The oordinate plane is both an ambient spae of dimension 2 and a manifold of dimension 2 within itself.

You an parametrize it simply by the oordinates x and y, although there are other ways to parametrize it

(suh as by polar oordinates).

Instead of d̄S, we an look at the pseudoexterior form 1/2 dr ×̂ dr, whih works out to dx ∧ dy (using

the right-hand rule). Alternatively, instead of d̄σ, we an look at the absolute form |dx ∧ dy|. These are
atually two equivalent ways to think of the area form d̄A, beause there is nothing to do to pseudorient

a manifold within itself; it s not possible to go around or aross the plane while staying within the plane.

In the past, we ve thought of d̄A as an absolute form, whih means that you didn t have to worry about

orientation or the right-hand rule. But when applying the Stokes Theorem later on, you ll have to think of

d̄A as a pseudoexterior form, beause the Stokes Theorem doesn t apply to absolute forms in general.

In any ase, to integrate a salar quantity f on a region in the plane, you integrate the rank-2 form

f d̄A; make sure that x and y are both inreasing, so that |dx ∧ dy| = dx dy in the integral; or if not, then

put a minus sign out front for eah one that doesn t.
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Volume integrals

Similarly, ordinary three-dimensional spae is both an ambient spae of dimension 3 and a manifold of di-

mension 3 within itself. You an parametrize it by the oordinates x, y, and z, although again there are

other ways to parametrize it (suh as by ylindrial or spherial oordinates).

Instead of d̄A we an look at the pseudoexterior form 1/6 dr ·̂ dr ×̂ dr, whih works out to dx ∧ dy ∧
dz (using the right-hand rule), or the absolute form |dx ∧ dy ∧ dz|. Again, these are two equivalent ways

to think of the volume form d̄V . In the past, we ve thought of d̄V as an absolute form; but when applying

the Stokes Theorem later on, you ll have to think of d̄V as a pseudoexterior form.

In any ase, to integrate a salar quantity f in a region in spae, you integrate the rank-3 form f d̄V ;

make sure that x, y, and z are all inreasing, so that |dx ∧ dy ∧ dz| = dx dy dz in the integral; or if not,

then put a minus sign out front for eah one that doesn t.

The Stokes Theorem

The (seond) Fundamental Theorem of Calulus states that

w b

a
du = u|

b

a.

This works just as well when there are several independent variables as when there is just one. In this

ase, you an also write d(f(R)) as ∇f(R) · dr to get the theorem

w b

R=a
∇f(R) · dr = f(b)− f(a).

Although this is now a theorem about integrating a gradient along a urve, in essene it is still just the

ft, a theorem about integrating di�erentials.

To keep the notation simple, I ll ontinue to refer to salar- and vetor-valued quantities rather than

to salar and vetor �elds (whih are kinds of funtions). The only real impreision here is that the sym-

bol written `∇' should properly be d/dR (or d/dr) to indiate the variables with respet to whih you re

di�erentiating; however, `∇' is muh more ommon. So for example, I ll write the preeding statement

about gradients as w b

a
∇f · dr = f |

b

a,

where the f here is really the same as what was u before.

This theorem generalizes to di�erential forms of higher rank, where it is alled the Stokes Theorem:

w
M
d ∧ α =

w
∂M

α.

Here, α is any exterior or pseudoexterior di�erential form and M is any oriented or pseudooriented man-

ifold, so long as they have the same kind of orientation and the dimension of M is 1 more than the rank

of α (so that the dimensions and ranks in eah integral math up). To do this properly, you need to know

two things: how to take the di�erential of a di�erential form, whih is the d ∧ α in the Stokes Theorem;

and how to take the endpoints of a manifold other than a urve, whih is the ∂M in the Stokes Theorem

(whih traditionally, but unfortunately, uses the same symbol as for partial derivatives).

With endpoints, you re really dealing with the boundary of a manifold. The boundary of a urve ori-

ented from a to b onsists of both the point {a} and the point {b}, the former negatively and the latter

positively. (Tehnially, this is a hain: the point {a} has weight −1, while the point {b} has weight 1.)
If you think of a point {a} as a manifold of dimension 0 and think of a salar quantity f as a di�erential

form of rank 0, then you integrate f on {a} by simply taking the value of f at a:
r
{a}

f = f |a, so
r
−1{a}+1{b}

f =

−1f |a + 1f |b = f |
b

a. Then the FTC an be written as

w
C
df =

w
∂C

f .
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The boundary of a surfae is a urve (or a hain made up of several urves), and the boundary of a region

of spae is a surfae (or a hain made up of several surfaes).

When you take the di�erential of an exterior di�erential form α, you get another exterior di�erential

form if you use the exterior di�erential d ∧ α (whih is usually written just `dα' by people who study only

exterior and pseudoexterior forms, even though there is also an ordinary nonexterior di�erential that ould

be used instead). You an also apply this to a pseudoexterior form to get another pseudoexterior form.

When you add forms, the exterior di�erential obeys the Sum Rule as usual; when you multiply them, you

have a kind of Produt Rule too. This is the same as the usual Produt Rule, exept that you must keep

trak of the order of multipliation. However, this aveat really doesn t matter due to the next rule: the

exterior di�erential of a di�erential is zero. For example,

d ∧ (x dy ∧ dz) = dx ∧ dy ∧ dz + x d ∧ dy ∧ dz − x dy ∧ d ∧ dz = dx ∧ dy ∧ dz + 0− 0 = dx ∧ dy ∧ dz.

So in the end, you just take the di�erential of the non-di�erential fator of eah term, then stik this with

a wedge in front of the previous di�erential fators.

When you relate di�erential forms to vetor �elds, you an also use various ways of taking derivatives

of vetor �elds. These an be expressed using ∇ and one of the ways of multiplying vetors: the diver-

gene ∇ · F is a salar �eld, and the url ∇× F is a pseudovetor �eld in 3 dimensions or a pseudosalar

�eld in 2 dimensions. Spei�ally, if F(x, y, . . .) = 〈M,N, . . .〉, then

∇ · F(x, y, . . .) = 〈∂/∂x, ∂/∂y, . . .〉 · 〈M,N, . . .〉 =
∂M

∂x
+

∂N

∂y
+ · · · ;

and

∇× F(x, y, z) = 〈∂/∂x, ∂/∂y, ∂/∂z〉 × 〈M,N,O〉 =

≠

∂O

∂y
−

∂N

∂z
,
∂M

∂z
−

∂O

∂x
,
∂N

∂x
−

∂M

∂y

∑

in 3 dimensions, while

∇× F(x, y) = 〈∂/∂x, ∂/∂y〉 × 〈M,N〉 =
∂N

∂x
−

∂M

∂y

in 2 dimensions.

The onnetion between these and di�erentials is as follows (where now I ll on�ate the funtions f

and F with their values f(x, y, . . .) and F(x, y, . . .) to keep the notation short):

• df = ∇f · dr in any number of dimensions;

• d ∧ (F · dr) = ∇× F d̄A in 2 dimensions;

• d ∧ (F · dr) = ∇× F · d̄S in 3 dimensions;

• d ∧ (F× dr) = ∇ · F d̄A in 2 dimensions; and

• d ∧ (F · d̄S) = ∇ · F d̄V in 3 dimensions.

(These are not new priniples, but rather fats that you an verify by writing everything in terms of the

omponents of F, partial derivatives, and di�erentials.) Here, d̄A is the area form |dx ∧ dy|, whih you

should now think of as a pseudoexterior form that you an identify with dx ∧ dy using the right-hand rule,

and d̄V is the volume form |dx ∧ dy ∧ dz|, whih you should now think of as a pseudoexterior form that

you an identify with dx ∧ dy ∧ dz using the right-hand rule.

Now suppose that a surfae S is bounded by a urve ∂S. The Stokes Theorem tells you that

w
S
d ∧ α =

w
∂S

α,

where α is any (exterior or pseudoexterior) di�erential form of rank 1. If you integrate a vetor quantity F

along ∂S, then you re really integrating the di�erential form F · dr, so

w
∂S

F · dr =
w
S
d ∧ (F · dr) =

w
S
∇× F · d̄S

in 3 dimensions, or w
∂S

F · dr =
w
S
d ∧ (F · dr) =

w
S
∇× F d̄A
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in 2 dimensions (where S is now a region in the plane). These are the theorems traditionally alled Stokes

′
s

Theorem and Green

′
s Theorem, respetively. If, in 2 dimensions, you integrate F aross ∂S, then

w
∂S

F× dr =
w
S
d ∧ (F× dr) =

w
S
∇ · F d̄A,

whih is another form of Green s Theorem; in terms of di�erentials, it s just like the previous version, ex-

ept that the form being integrated is pseudoexterior instead of exterior. (These theorems are not new

priniples either, but follow from the general Stokes Theorem and the exterior di�erentials listed above.)

Next, suppose that a region Q in spae is bounded by a surfae ∂Q. Now the Stokes Theorem tells

you that w
Q
d ∧ α =

w
∂Q

α,

where now α is any (exterior or pseudoexterior) di�erential form of rank 2. If you integrate a vetor �eld F

aross ∂Q, then you re really integrating F · d̄S, so

w
∂Q

F · d̄S =
w
Q
d ∧ (F · d̄S) =

w
Q
∇ · F d̄V .

This is the theorem traditionally alled Gauss

′
s Theorem, although many textbooks simply all it the Di-

vergene Theorem. (One more, you an verify these by expliit alulation.)

Sine the boundary ∂M for any manifold is losed in on itself, the boundary of the boundary, ∂∂M , is

always empty. This means that

w
M
d ∧ d ∧ α =

w
∂M

d ∧ α =
w
∂∂M

α = 0;

sine this is true no matter how small M may be, you an onlude that

d ∧ d ∧ α = 0

for any (exterior or pseudoexterior) di�erential form α. In terms of vetor �elds, this has two onsequenes:

∇×∇f = 0

in 2 or 3 dimensions, and

∇ · ∇ × F = 0

in 3 dimensions. If you write these fats out using partial derivatives, then you ll see that they simply

state the equality of mixed partial derivatives. (As a tehniality, that equality is not always guaranteed,

but it is guaranteed when the mixed partial derivatives are ontinuous; we derived these fats by onsider-

ing integrals that likewise are only guaranteed to exist when the forms being integrated are ontinuous.

Conversely, the Stokes Theorem an be proved in the �rst plae by using the equality of mixed partial

derivatives and the ordinary ft applied to iterated integrals, by arefully keeping trak of everything.)

Optional material

This material doesn t ome up in the ourse, but it s used a lot and �lls in some gaps in the onepts.
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Hodge duals

You may notie that a vetor quantity F an be turned into a di�erential form in two di�erent ways: in

2 dimensions, F · dr is an exterior form of rank 1, while F× dr is a pseudoexterior form of rank 1; in 3 di-

mensions, F · dr is again an exterior form of rank 1, while now F · d̄S is a pseudoexterior form of rank 2.
Either way, the two di�erential forms related to a single vetor �eld are alled Hodge duals of eah other.

If you work diretly with di�erential forms instead of vetors, then you an use the Hodge duals to bring

in geometri ideas of length and angle. In this way, you an work as muh as possible with the objets

that you integrate to get measurable quantities.

The Hodge dual of a di�erential form α is denoted ∗α. In retangular oordinates, it s easy to alu-

late Hodge duals; you replae the di�erential fators of eah term with whatever is missing in the area or

volume form (written in the order given by the right-hand rule), paying attention to the sign. This gives

you

∗dx = dy, ∗dy = −dx

in 2 dimensions; and

∗dx = dy ∧ dz, ∗dy = −dx ∧ dz = dz ∧ dx, ∗dz = dx ∧ dy

and

∗(dy ∧ dz) = dx, ∗(dz ∧ dx) = dy, ∗(dx ∧ dy) = dz

in 3 dimensions. (The Hodge dual of an exterior form is a pseudoexterior form and vie versa, and these

rules are written using the right-hand rule.) Now you an hek that

∗(F · dr) = F× dr, ∗(F× dr) = −F · dr,

in 2 dimensions; and

∗(F · dr) = F · d̄S, ∗(F · d̄S) = F · dr

in 3 dimensions. You an even extend this to forms of top rank and to salar quantities (whih are di�er-

ential forms of rank 0):
∗(d̄A) = ∗(dx ∧ dy) = 1, ∗1 = dx ∧ dy = d̄A

in 2 dimensions; and

∗(d̄V ) = ∗(dx ∧ dy ∧ dz) = 1, ∗1 = dx ∧ dy ∧ dz = d̄V

in 3 dimensions.

Laplaians

The Laplaian of a form α is

∆α = ∗
Ä

d ∧ ∗(d ∧ α)
ä

± d ∧ ∗(d ∧ ∗α),

where you use + or − on the seond term depending on whether the ambient spae has even or odd di-

mension, and you must throw in another overall minus sign if both the spae s dimension and the form s

rank are odd. In other words, take the exterior di�erential, then the Hodge dual, then repeat; and also

do this in reverse order; then add or subtrat these aording to the parity of the dimension, and possibly

take the opposite of the entire result. (I know, that s kind of a ompliated rule; it s been hosen just so to

make everything below work out.) Notie that ∆α has both the same rank and the same orientation as α,

so it is a nie notion of seond derivative.

If you think of a salar �eld f as an exterior form of rank 0, then d ∧ f = df , while ∗f has top rank,

so d ∧ ∗f = 0. Then

∆f = ∗(d ∧ ∗df) = ∗
Ä

d ∧ ∗(∇f · dr)
ä

= ∗
Ä

d ∧ (∇f × dr)
ä

= ∗(∇ · ∇f d̄A) = ∇ · ∇f

Page 7 of 8



in 2 dimensions; and

∆f = ∗(d ∧ ∗df) = ∗
Ä

d ∧ ∗(∇f · dr)
ä

= ∗
Ä

d ∧ (∇f · d̄S)
ä

= ∗(∇ · ∇f d̄V ) = ∇ · ∇f

in 3 dimensions. In fat, the rule that ∆f = ∇ · ∇f is orret in any number of dimensions (and the weird

rules about minus signs are designed to make that work out); for this reason, the Laplaian operator ∆ is

often written as `‖∇‖
2
' or just `∇2

' (think of ‖v‖
2
= v · v).

Other Laplaians are

∆(F · dr) = ∇(∇ · F) · dr+∇(∇× F)× dr, ∆(F× dr) = ∇(∇ · F)× dr−∇(∇× F) · dr

in 2 dimensions; and

∆(F · dr) = ∇(∇ · F) · dr−∇× (∇× F) · dr, ∆(F · d̄S) = ∇(∇ · F) · d̄S−∇× (∇× F) · d̄S

in 3 dimensions. If you de�ne ∆F so that ∆F · dr = ∆(F · dr), you an see (by working out their ompo-

nents) that ∆F× dr = ∆(F× dr) in 2 dimensions and that ∆F · d̄S = ∆(F · d̄S) in 3 dimensions; further-

more, eah omponent of ∆F is the Laplaian of the orresponding omponent of F. So Laplaians work

very niely indeed.
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