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Exterior di�erential forms

All of the integrals in ve
tor 
al
ulus 
an be thought of as integrals of di�erential forms of one sort or an-

other. Sin
e integration of di�erential forms generalizes in ways that integration of ve
tor �elds 
annot

(some of whi
h are important in appli
ations, espe
ially to physi
s), it s useful to be able to think about

di�erential forms. Furthermore, you then need fewer formulas for the various derivatives of ve
tor �elds

and for the theorems that relate derivatives to integrals.

General prin
iples

Here I spell out the general prin
iples of integrating di�erential forms, but it s really the examples that

follow that will make the ideas 
lear.

There are three sorts of di�erential forms that we ll need: exterior forms, pseudoexterior forms, and

absolute forms. The exterior forms are the most straightforward kind and the simplest to 
al
ulate with.

The pseudoexterior forms are essentially the same as exterior forms, ex
ept that their sign is determined

by using the right-hand rule; if you used the left-hand rule instead, then the pseudoexterior forms would

have opposite sign but the results of all integrals would stay the same. (In general, you 
an put `pseudo'

before the name of a 
on
ept to get the name of a related 
on
ept where the sign depends on the right-

hand rule. It is sometimes handy to keep tra
k of whether something is pseudo or not; for example, if you

ever add something pseudo to something nonpseudo, then you know that you re making a mistake, mu
h

as you would be if you added quantities measured in di�erent units. However, you 
an ignore the di�er-

en
e in 
al
ulations as long as you always use the right-hand rule.) The absolute forms are least used in

appli
ations; they typi
ally arise by taking the absolute value of another form (and then possibly multi-

plying by a s
alar quantity). However, they are still important, sin
e lengths, areas, and volumes may be

found by integrating absolute forms. (If you read other material on di�erential forms, the exterior ones are

the most 
ommonly studied, and people will often leave out the word `exterior'. Then the pseudoexterior

forms are just 
alled `pseudoforms', and there is no 
ommon name for the absolute forms at all; `absolute'

is a term for them that I made up. On the other hand, there are yet other kinds of di�erential forms be-

sides all of these.)

You integrate these forms along various regions in spa
e, 
alled manifolds. These manifolds 
an 
or-

respondingly be oriented, pseudooriented, or unoriented. Now it s the unoriented manifolds that are the

simplest; they are just shapes of 
onsistent dimension. With an oriented manifold, you also make a 
hoi
e

of whi
h dire
tion to go along the manifold; with a pseudooriented manifold, you instead make a 
hoi
e

of whi
h dire
tion to go around or a
ross the manifold. You integrate exterior forms on oriented mani-

folds, pseudoexterior forms on pseudooriented manifolds, and absolute forms on unoriented manifolds. (If

you read other material, the pseudooriented manifolds are sometimes also 
alled `transversely oriented'.)

People also talk about integrating on 
hains: a 
hain is just a list of manifolds, ea
h with a real number

(its weight); to integrate a di�erential form on a 
hain, you multiply the integral on ea
h manifold by that

manifold s weight and then add these produ
ts. You ll see some simple examples of 
hains when we get to

the Stokes Theorem below.

To 
al
ulate integrals, you want to parametrize your manifolds; you ll have one or more variables

t, u, v, . . . (the parameters), running over some domain of values, and a point-valued fun
tion (the parame-

trization) of those variables spe
ifying whi
h point in spa
e 
orresponds to whi
h values of the parameters.

Running this fun
tion over the entire domain of parameters 
arves out the manifold. (You ll want your

parametrization fun
tions to be 
ontinuously di�erentiable, in order to avoid worrying about whether the

integrals are de�ned. For the same reason, the forms themselves should be 
ontinuous, and the domains

of the paremetrizations should be 
ompa
t, that is 
losed and bounded. The integrals may be de�ned in

other 
ases, but they are guaranteed to exist if these 
onditions are met.)

The number of parameters used is the dimension of the manifold. This must mat
h the rank of the

di�erential form, whi
h is the number of di�erentials in ea
h term of the form. These di�erentials are 
om-

bined using the wedge produ
t , ∧. A key property of the wedge produ
t is that it is anti
ommutative be-

tween di�erentials; that is,

dx ∧ dy = −dy ∧ dx
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(mu
h like the 
ross produ
t of ve
tors). This also means that dx ∧ dx = 0. However, for absolute forms,

you take the absolute value of the wedge produ
t; then |dx ∧ dy| = |−dy ∧ dx| = |dy ∧ dx|, while |dx ∧ dx| =
|0| = 0 still.

To 
al
ulate the integral, you use the parametrization to express the 
oordinates x, y, . . . in terms of

the parameters t, u, v, . . ., then di�erentiate this to get dx, dy, . . . in terms of dt, du, dv, . . ., so that the in-

tegral is entirely in terms of the parameters. You then express this as an iterated integral, 
he
king the

orientation or pseudoorientation and putting a minus sign out front if it goes the wrong way.

Summary of the integrals

This se
tion repeats what we ve already done, but shows expli
itly how every integral that you deal with

in this 
ourse is either the integral of an exterior form on an oriented manifold, the integral of a pseudoex-

terior form on a pseudooriented manifold, or the integral of an absolute form on an unoriented manifold.

Curves

A 
urve C is a manifold of dimension 1. So it may be parametrized by a fun
tion (whi
h we ll assume is


ontinuously di�erentiable) that takes one variable t to a point R = (x, y, . . .). Note that the di�erential
dR = 〈dx, dy, . . .〉 is a ve
tor; if you write r for the ve
tor R− (0, 0, . . .), then dR = dr, and dr is the more

usual notation (even though R is the more fundamental 
on
ept). When you orient a 
urve, you spe
i-

fy whi
h dire
tion to travel along the 
urve; when you pseudoorient a 
urve in 2 dimensions, you spe
ify

whi
h dire
tion to travel a
ross the 
urve. (You won t need to pseudoorient a 
urve in more dimensions in

this 
lass, although it 
an be done by spe
ifying dire
tions around the 
urve.)

To integrate a ve
tor quantity F = 〈M,N, . . .〉 along an oriented 
urve C, you integrate the rank-1
exterior form F · dr:

w
C
F · dr =

w
C
〈M,N, . . .〉 · 〈dx, dy, . . .〉 =

w
C
(M dx+N dy + · · ·) =

w
C

Å

M
dx

dt
+N

dy

dt
+ · · ·

ã

dt

or w
C
F · dr =

w
C
F ·

dr

dt
dt =

w
C
〈M,N, . . .〉 ·

≠

dx

dt
,
dy

dt
, . . .

∑

dt =
w
C

Å

M
dx

dt
+N

dy

dt
+ . . .

ã

dt.

(There s no need to learn all of these formulas; just put everything in terms of t and push through.) To

mat
h orientations, make sure that the dire
tion along the 
urve as t in
reases is the same dire
tion as the


urve s orientation; or if not, then put a minus sign out front.

To integrate a ve
tor quantity F = 〈M,N〉 a
ross a pseudooriented 
urve C in 2 dimensions, you inte-

grate the rank-1 pseudoexterior form F× dr (where the 
ross produ
t in 2 dimensions produ
es a s
alar,

or rather a pseudos
alar sin
e the sign depends on the right-hand rule):

w
C
F× dr =

w
C
〈M,N〉 × 〈dx, dy〉 =

w
C
(M dy −N dx) =

w
C

Å

M
dy

dt
−N

dx

dt

ã

dt

or w
C
F× dr =

w
C
F×

dr

dt
dt =

w
C
〈M,N〉 ×

≠

dx

dt
,
dy

dt

∑

dt =
w
C

Å

M
dy

dt
−N

dx

dt

ã

dt.

To mat
h pseudoorientations using the right-hand rule, make sure that the dire
tion along the 
urve as t


hanges is 
ounter
lo
kwise from the dire
tion of the 
urve s pseudoorientation; or if not, then put a minus

sign out front.

To integrate a s
alar quantity f on an unoriented 
urve C, you integrate the rank-1 absolute form

f d̄s, where s has no meaning by itself but instead d̄s is the absolute form ‖dr‖:

w
C
f d̄s =

w
C
f ‖dr‖ =

w
C
f ‖〈dx, dy, . . .〉‖ =

w
C
f

»

(dx)
2
+ (dy)

2
+ · · · =

w
C
f

√

Å

dx

dt

ã2

+

Å

dy

dt

ã2

+ · · · |dt|

or

w
C
f d̄s =

w
C
f ‖dr‖ =

w
C
f

∥

∥

∥

∥

dr

dt

∥

∥

∥

∥

|dt| =
w
C
f

∥

∥

∥

∥

≠

dx

dt
,
dy

dt
, . . .

∑

∥

∥

∥

∥

|dt| =
w
C
f

√

Å

dx

dt

ã2

+

Å

dy

dt

ã2

+ · · · |dt|.

Now there is no orientation to mat
h; instead, make sure that t is in
reasing, so that |dt| = dt in the inte-

gral; or if not, then put a minus sign out front.
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Surfa
es

A surfa
e S is a manifold of dimension 2, given by a fun
tion (whi
h we ll assume is 
ontinuously dif-

ferentiable) that takes two variables u, v to a point R = (x, y, z, . . .) When you pseudoorient a surfa
e in

3 dimensions, you spe
ify whi
h dire
tion to travel a
ross the surfa
e. (You won t need to pseudoorient a

surfa
e in more dimensions, nor will you need to orient any at all, although again these 
an be done.)

To integrate a ve
tor quantity F = 〈M,N,O〉 a
ross a pseudooriented surfa
e S in 3 dimensions, you

integrate the rank-2 pseudoexterior form F · d̄S, where S has no meaning by itself, but instead d̄S is the

pseudove
tor-valued form 1/2 dr ×̂ dr (whi
h as a ve
tor is multiplied by the 
ross produ
t and as a di�er-

ential form is multiplied by the wedge produ
t). This works out to 〈dy ∧ dz, dz ∧ dx, dx ∧ dy〉 (using the

right-hand rule) or ∂r/∂u× ∂r/∂v du ∧ dv:w
S
F · d̄S =

w
S
〈M,N,O〉 · 〈dy ∧ dz, dz ∧ dx, dx ∧ dy〉 =

w
S
(M dy ∧ dz +N dz ∧ dx+O dx ∧ dy)

=
w
S

(

M

Å

∂y

∂u

∂z

∂v
−

∂y

∂v

∂z

∂u

ã

+N

Å

∂z

∂u

∂x

∂v
−

∂z

∂v

∂x

∂u

ã

+O

Å

∂x

∂u

∂y

∂v
−

∂x

∂v

∂y

∂u

ã
)

du ∧ dv

or

w
S
F · d̄S =

w
S
〈M,N,O〉 ·

∂r

∂u
×

∂r

∂v
du ∧ dv =

w
S
〈M,N,O〉 ·

≠

∂x

∂u
,
∂y

∂u
,
∂z

∂u

∑

×

≠

∂x

∂v
,
∂y

∂v
,
∂z

∂v

∑

du ∧ dv

=
w
S

(

M

Å

∂y

∂u

∂z

∂v
−

∂y

∂v

∂z

∂u

ã

+N

Å

∂z

∂u

∂x

∂v
−

∂z

∂v

∂x

∂u

ã

+O

Å

∂x

∂u

∂y

∂v
−

∂x

∂v

∂y

∂u

ã
)

du ∧ dv.

To mat
h pseudoorientations using the right-hand rule, make sure that, as you turn the �ngers of your

right hand from the dire
tion in whi
h u 
hanges towards the dire
tion in whi
h v 
hanges, your thumb

points in the dire
tion of the surfa
e s pseudoorientation; or if not, then put a minus sign out front.

To integrate a s
alar quantity f on an unoriented surfa
e S, you integrate the rank-2 absolute form

f d̄σ, where σ has no meaning by itself but instead d̄σ is the absolute form ‖d̄S‖:
w
S
f d̄σ =

w
S
f ‖d̄S‖ =

w
S
f ‖〈dy ∧ dz, dz ∧ dx, dx ∧ dy〉‖ =

w
S
f

»

(dy ∧ dz)
2
+ (dz ∧ dx)

2
+ (dx ∧ dy)

2

=
w
S
f

√

Å

∂y

∂u

∂z

∂v
−

∂y

∂v

∂z

∂u

ã2

+

Å

∂z

∂u

∂x

∂v
−

∂z

∂v

∂x

∂u

ã2

+

Å

∂x

∂u

∂y

∂v
−

∂x

∂v

∂y

∂u

ã2

|du ∧ dv|

or

w
S
f d̄σ =

w
S
f ‖d̄S‖ =

w
S
f

∥

∥

∥

∥

∂r

∂u
×

∂r

∂v

∥

∥

∥

∥

|du ∧ dv| =
w
S
f

∥

∥

∥

∥

≠

∂x

∂u
,
∂y

∂u
,
∂z

∂u

∑

×

≠

∂x

∂v
,
∂y

∂v
,
∂z

∂v

∑

∥

∥

∥

∥

|du ∧ dv|

=
w
S
f

√

Å

∂y

∂u

∂z

∂v
−

∂y

∂v

∂z

∂u

ã2

+

Å

∂z

∂u

∂x

∂v
−

∂z

∂v

∂x

∂u

ã2

+

Å

∂x

∂u

∂y

∂v
−

∂x

∂v

∂y

∂u

ã2

|du ∧ dv|.

Again there is no orientation to mat
h; instead, make sure that u and v are both in
reasing, so that |du ∧ dv| =
du dv in the integral; or if not, then put a minus sign out front for ea
h one that doesn t.

Area integrals

The 
oordinate plane is both an ambient spa
e of dimension 2 and a manifold of dimension 2 within itself.

You 
an parametrize it simply by the 
oordinates x and y, although there are other ways to parametrize it

(su
h as by polar 
oordinates).

Instead of d̄S, we 
an look at the pseudoexterior form 1/2 dr ×̂ dr, whi
h works out to dx ∧ dy (using

the right-hand rule). Alternatively, instead of d̄σ, we 
an look at the absolute form |dx ∧ dy|. These are
a
tually two equivalent ways to think of the area form d̄A, be
ause there is nothing to do to pseudorient

a manifold within itself; it s not possible to go around or a
ross the plane while staying within the plane.

In the past, we ve thought of d̄A as an absolute form, whi
h means that you didn t have to worry about

orientation or the right-hand rule. But when applying the Stokes Theorem later on, you ll have to think of

d̄A as a pseudoexterior form, be
ause the Stokes Theorem doesn t apply to absolute forms in general.

In any 
ase, to integrate a s
alar quantity f on a region in the plane, you integrate the rank-2 form

f d̄A; make sure that x and y are both in
reasing, so that |dx ∧ dy| = dx dy in the integral; or if not, then

put a minus sign out front for ea
h one that doesn t.
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Volume integrals

Similarly, ordinary three-dimensional spa
e is both an ambient spa
e of dimension 3 and a manifold of di-

mension 3 within itself. You 
an parametrize it by the 
oordinates x, y, and z, although again there are

other ways to parametrize it (su
h as by 
ylindri
al or spheri
al 
oordinates).

Instead of d̄A we 
an look at the pseudoexterior form 1/6 dr ·̂ dr ×̂ dr, whi
h works out to dx ∧ dy ∧
dz (using the right-hand rule), or the absolute form |dx ∧ dy ∧ dz|. Again, these are two equivalent ways

to think of the volume form d̄V . In the past, we ve thought of d̄V as an absolute form; but when applying

the Stokes Theorem later on, you ll have to think of d̄V as a pseudoexterior form.

In any 
ase, to integrate a s
alar quantity f in a region in spa
e, you integrate the rank-3 form f d̄V ;

make sure that x, y, and z are all in
reasing, so that |dx ∧ dy ∧ dz| = dx dy dz in the integral; or if not,

then put a minus sign out front for ea
h one that doesn t.

The Stokes Theorem

The (se
ond) Fundamental Theorem of Cal
ulus states that

w b

a
du = u|

b

a.

This works just as well when there are several independent variables as when there is just one. In this


ase, you 
an also write d(f(R)) as ∇f(R) · dr to get the theorem

w b

R=a
∇f(R) · dr = f(b)− f(a).

Although this is now a theorem about integrating a gradient along a 
urve, in essen
e it is still just the

ft
, a theorem about integrating di�erentials.

To keep the notation simple, I ll 
ontinue to refer to s
alar- and ve
tor-valued quantities rather than

to s
alar and ve
tor �elds (whi
h are kinds of fun
tions). The only real impre
ision here is that the sym-

bol written `∇' should properly be d/dR (or d/dr) to indi
ate the variables with respe
t to whi
h you re

di�erentiating; however, `∇' is mu
h more 
ommon. So for example, I ll write the pre
eding statement

about gradients as w b

a
∇f · dr = f |

b

a,

where the f here is really the same as what was u before.

This theorem generalizes to di�erential forms of higher rank, where it is 
alled the Stokes Theorem:

w
M
d ∧ α =

w
∂M

α.

Here, α is any exterior or pseudoexterior di�erential form and M is any oriented or pseudooriented man-

ifold, so long as they have the same kind of orientation and the dimension of M is 1 more than the rank

of α (so that the dimensions and ranks in ea
h integral mat
h up). To do this properly, you need to know

two things: how to take the di�erential of a di�erential form, whi
h is the d ∧ α in the Stokes Theorem;

and how to take the endpoints of a manifold other than a 
urve, whi
h is the ∂M in the Stokes Theorem

(whi
h traditionally, but unfortunately, uses the same symbol as for partial derivatives).

With endpoints, you re really dealing with the boundary of a manifold. The boundary of a 
urve ori-

ented from a to b 
onsists of both the point {a} and the point {b}, the former negatively and the latter

positively. (Te
hni
ally, this is a 
hain: the point {a} has weight −1, while the point {b} has weight 1.)
If you think of a point {a} as a manifold of dimension 0 and think of a s
alar quantity f as a di�erential

form of rank 0, then you integrate f on {a} by simply taking the value of f at a:
r
{a}

f = f |a, so
r
−1{a}+1{b}

f =

−1f |a + 1f |b = f |
b

a. Then the FTC 
an be written as

w
C
df =

w
∂C

f .
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The boundary of a surfa
e is a 
urve (or a 
hain made up of several 
urves), and the boundary of a region

of spa
e is a surfa
e (or a 
hain made up of several surfa
es).

When you take the di�erential of an exterior di�erential form α, you get another exterior di�erential

form if you use the exterior di�erential d ∧ α (whi
h is usually written just `dα' by people who study only

exterior and pseudoexterior forms, even though there is also an ordinary nonexterior di�erential that 
ould

be used instead). You 
an also apply this to a pseudoexterior form to get another pseudoexterior form.

When you add forms, the exterior di�erential obeys the Sum Rule as usual; when you multiply them, you

have a kind of Produ
t Rule too. This is the same as the usual Produ
t Rule, ex
ept that you must keep

tra
k of the order of multipli
ation. However, this 
aveat really doesn t matter due to the next rule: the

exterior di�erential of a di�erential is zero. For example,

d ∧ (x dy ∧ dz) = dx ∧ dy ∧ dz + x d ∧ dy ∧ dz − x dy ∧ d ∧ dz = dx ∧ dy ∧ dz + 0− 0 = dx ∧ dy ∧ dz.

So in the end, you just take the di�erential of the non-di�erential fa
tor of ea
h term, then sti
k this with

a wedge in front of the previous di�erential fa
tors.

When you relate di�erential forms to ve
tor �elds, you 
an also use various ways of taking derivatives

of ve
tor �elds. These 
an be expressed using ∇ and one of the ways of multiplying ve
tors: the diver-

gen
e ∇ · F is a s
alar �eld, and the 
url ∇× F is a pseudove
tor �eld in 3 dimensions or a pseudos
alar

�eld in 2 dimensions. Spe
i�
ally, if F(x, y, . . .) = 〈M,N, . . .〉, then

∇ · F(x, y, . . .) = 〈∂/∂x, ∂/∂y, . . .〉 · 〈M,N, . . .〉 =
∂M

∂x
+

∂N

∂y
+ · · · ;

and

∇× F(x, y, z) = 〈∂/∂x, ∂/∂y, ∂/∂z〉 × 〈M,N,O〉 =

≠

∂O

∂y
−

∂N

∂z
,
∂M

∂z
−

∂O

∂x
,
∂N

∂x
−

∂M

∂y

∑

in 3 dimensions, while

∇× F(x, y) = 〈∂/∂x, ∂/∂y〉 × 〈M,N〉 =
∂N

∂x
−

∂M

∂y

in 2 dimensions.

The 
onne
tion between these and di�erentials is as follows (where now I ll 
on�ate the fun
tions f

and F with their values f(x, y, . . .) and F(x, y, . . .) to keep the notation short):

• df = ∇f · dr in any number of dimensions;

• d ∧ (F · dr) = ∇× F d̄A in 2 dimensions;

• d ∧ (F · dr) = ∇× F · d̄S in 3 dimensions;

• d ∧ (F× dr) = ∇ · F d̄A in 2 dimensions; and

• d ∧ (F · d̄S) = ∇ · F d̄V in 3 dimensions.

(These are not new prin
iples, but rather fa
ts that you 
an verify by writing everything in terms of the


omponents of F, partial derivatives, and di�erentials.) Here, d̄A is the area form |dx ∧ dy|, whi
h you

should now think of as a pseudoexterior form that you 
an identify with dx ∧ dy using the right-hand rule,

and d̄V is the volume form |dx ∧ dy ∧ dz|, whi
h you should now think of as a pseudoexterior form that

you 
an identify with dx ∧ dy ∧ dz using the right-hand rule.

Now suppose that a surfa
e S is bounded by a 
urve ∂S. The Stokes Theorem tells you that

w
S
d ∧ α =

w
∂S

α,

where α is any (exterior or pseudoexterior) di�erential form of rank 1. If you integrate a ve
tor quantity F

along ∂S, then you re really integrating the di�erential form F · dr, so

w
∂S

F · dr =
w
S
d ∧ (F · dr) =

w
S
∇× F · d̄S

in 3 dimensions, or w
∂S

F · dr =
w
S
d ∧ (F · dr) =

w
S
∇× F d̄A
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in 2 dimensions (where S is now a region in the plane). These are the theorems traditionally 
alled Stokes

′
s

Theorem and Green

′
s Theorem, respe
tively. If, in 2 dimensions, you integrate F a
ross ∂S, then

w
∂S

F× dr =
w
S
d ∧ (F× dr) =

w
S
∇ · F d̄A,

whi
h is another form of Green s Theorem; in terms of di�erentials, it s just like the previous version, ex-


ept that the form being integrated is pseudoexterior instead of exterior. (These theorems are not new

prin
iples either, but follow from the general Stokes Theorem and the exterior di�erentials listed above.)

Next, suppose that a region Q in spa
e is bounded by a surfa
e ∂Q. Now the Stokes Theorem tells

you that w
Q
d ∧ α =

w
∂Q

α,

where now α is any (exterior or pseudoexterior) di�erential form of rank 2. If you integrate a ve
tor �eld F

a
ross ∂Q, then you re really integrating F · d̄S, so

w
∂Q

F · d̄S =
w
Q
d ∧ (F · d̄S) =

w
Q
∇ · F d̄V .

This is the theorem traditionally 
alled Gauss

′
s Theorem, although many textbooks simply 
all it the Di-

vergen
e Theorem. (On
e more, you 
an verify these by expli
it 
al
ulation.)

Sin
e the boundary ∂M for any manifold is 
losed in on itself, the boundary of the boundary, ∂∂M , is

always empty. This means that

w
M
d ∧ d ∧ α =

w
∂M

d ∧ α =
w
∂∂M

α = 0;

sin
e this is true no matter how small M may be, you 
an 
on
lude that

d ∧ d ∧ α = 0

for any (exterior or pseudoexterior) di�erential form α. In terms of ve
tor �elds, this has two 
onsequen
es:

∇×∇f = 0

in 2 or 3 dimensions, and

∇ · ∇ × F = 0

in 3 dimensions. If you write these fa
ts out using partial derivatives, then you ll see that they simply

state the equality of mixed partial derivatives. (As a te
hni
ality, that equality is not always guaranteed,

but it is guaranteed when the mixed partial derivatives are 
ontinuous; we derived these fa
ts by 
onsider-

ing integrals that likewise are only guaranteed to exist when the forms being integrated are 
ontinuous.

Conversely, the Stokes Theorem 
an be proved in the �rst pla
e by using the equality of mixed partial

derivatives and the ordinary ft
 applied to iterated integrals, by 
arefully keeping tra
k of everything.)

Optional material

This material doesn t 
ome up in the 
ourse, but it s used a lot and �lls in some gaps in the 
on
epts.
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Hodge duals

You may noti
e that a ve
tor quantity F 
an be turned into a di�erential form in two di�erent ways: in

2 dimensions, F · dr is an exterior form of rank 1, while F× dr is a pseudoexterior form of rank 1; in 3 di-

mensions, F · dr is again an exterior form of rank 1, while now F · d̄S is a pseudoexterior form of rank 2.
Either way, the two di�erential forms related to a single ve
tor �eld are 
alled Hodge duals of ea
h other.

If you work dire
tly with di�erential forms instead of ve
tors, then you 
an use the Hodge duals to bring

in geometri
 ideas of length and angle. In this way, you 
an work as mu
h as possible with the obje
ts

that you integrate to get measurable quantities.

The Hodge dual of a di�erential form α is denoted ∗α. In re
tangular 
oordinates, it s easy to 
al
u-

late Hodge duals; you repla
e the di�erential fa
tors of ea
h term with whatever is missing in the area or

volume form (written in the order given by the right-hand rule), paying attention to the sign. This gives

you

∗dx = dy, ∗dy = −dx

in 2 dimensions; and

∗dx = dy ∧ dz, ∗dy = −dx ∧ dz = dz ∧ dx, ∗dz = dx ∧ dy

and

∗(dy ∧ dz) = dx, ∗(dz ∧ dx) = dy, ∗(dx ∧ dy) = dz

in 3 dimensions. (The Hodge dual of an exterior form is a pseudoexterior form and vi
e versa, and these

rules are written using the right-hand rule.) Now you 
an 
he
k that

∗(F · dr) = F× dr, ∗(F× dr) = −F · dr,

in 2 dimensions; and

∗(F · dr) = F · d̄S, ∗(F · d̄S) = F · dr

in 3 dimensions. You 
an even extend this to forms of top rank and to s
alar quantities (whi
h are di�er-

ential forms of rank 0):
∗(d̄A) = ∗(dx ∧ dy) = 1, ∗1 = dx ∧ dy = d̄A

in 2 dimensions; and

∗(d̄V ) = ∗(dx ∧ dy ∧ dz) = 1, ∗1 = dx ∧ dy ∧ dz = d̄V

in 3 dimensions.

Lapla
ians

The Lapla
ian of a form α is

∆α = ∗
Ä

d ∧ ∗(d ∧ α)
ä

± d ∧ ∗(d ∧ ∗α),

where you use + or − on the se
ond term depending on whether the ambient spa
e has even or odd di-

mension, and you must throw in another overall minus sign if both the spa
e s dimension and the form s

rank are odd. In other words, take the exterior di�erential, then the Hodge dual, then repeat; and also

do this in reverse order; then add or subtra
t these a

ording to the parity of the dimension, and possibly

take the opposite of the entire result. (I know, that s kind of a 
ompli
ated rule; it s been 
hosen just so to

make everything below work out.) Noti
e that ∆α has both the same rank and the same orientation as α,

so it is a ni
e notion of se
ond derivative.

If you think of a s
alar �eld f as an exterior form of rank 0, then d ∧ f = df , while ∗f has top rank,

so d ∧ ∗f = 0. Then

∆f = ∗(d ∧ ∗df) = ∗
Ä

d ∧ ∗(∇f · dr)
ä

= ∗
Ä

d ∧ (∇f × dr)
ä

= ∗(∇ · ∇f d̄A) = ∇ · ∇f
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in 2 dimensions; and

∆f = ∗(d ∧ ∗df) = ∗
Ä

d ∧ ∗(∇f · dr)
ä

= ∗
Ä

d ∧ (∇f · d̄S)
ä

= ∗(∇ · ∇f d̄V ) = ∇ · ∇f

in 3 dimensions. In fa
t, the rule that ∆f = ∇ · ∇f is 
orre
t in any number of dimensions (and the weird

rules about minus signs are designed to make that work out); for this reason, the Lapla
ian operator ∆ is

often written as `‖∇‖
2
' or just `∇2

' (think of ‖v‖
2
= v · v).

Other Lapla
ians are

∆(F · dr) = ∇(∇ · F) · dr+∇(∇× F)× dr, ∆(F× dr) = ∇(∇ · F)× dr−∇(∇× F) · dr

in 2 dimensions; and

∆(F · dr) = ∇(∇ · F) · dr−∇× (∇× F) · dr, ∆(F · d̄S) = ∇(∇ · F) · d̄S−∇× (∇× F) · d̄S

in 3 dimensions. If you de�ne ∆F so that ∆F · dr = ∆(F · dr), you 
an see (by working out their 
ompo-

nents) that ∆F× dr = ∆(F× dr) in 2 dimensions and that ∆F · d̄S = ∆(F · d̄S) in 3 dimensions; further-

more, ea
h 
omponent of ∆F is the Lapla
ian of the 
orresponding 
omponent of F. So Lapla
ians work

very ni
ely indeed.
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