Notes MATH-2080-Es31 2015 February 25
The wedge product

The wedge product of differential forms is kind of like the cross product of vectors; however, instead of
trying to interpret it as another vector (or a scalar), we view it as another differential form of higher ‘rank’
than the original forms. The ordinary differential forms that we're used to are rank 1, and they can be
evaluted at a point and a vector; to evaluate a differential form of rank 2, you need a point and 2 vectors.
If you keep going with more wedge products, then you get differential forms of even higher rank: to evalu-
ate a differential form of rank n, you need a point and n vectors.
The wedge product also involves subtracting one thing from another (again like the cross product); if
a and f are 1-forms (differential forms of rank 1, as we've been using so far), P is a point, and v and w
are vectors, then
(a/\ﬁ)| R=P —Oé|R PﬂlR P —a|R Pﬁ|R P
dR=v,w R=w dR=v
For example, if @ = 22 dx + zy dy, 8 = y*dr — zydy, P = (2,3), v = (0.01,0.04), and w = (—0.01,0),
then

(x,y)=(2,3)
d(x,y)=(0.01,0.04),(—0.01,0)

((JU2 dz + zydy) A (v* de — 2y dx))

= ($2 dz + xy dy)| (2,4)=(2,3) (y2 dr — xy dy)| (¢ y) (2,3)

(da,dy)=(0.01,0.04) (da =(—0.01,0)

— (2% dz + 2y dy)|  ww—cs  (YPdr—zydy)|]  @w-cs

(da,dy)=(—0.01,0) (da@,dy)=(0.01,0.04)

= ((2°0.01) + (2)(3 ><004>)(<3 (=0.01) — (2)(3)(0))

)
~ (@?*(-0.01) )(0))((3)*(0.01) ( )( )(0.04))
= (0.28)(—0.09) — (—0.04)(—0.15) = —0.0312.

A few basic properties of the wedge product follow immediately (where «, 8, are 1-forms and u is a
O-form, that is an ordinary non-differential quantity):

a(uB) = (ua) A B =u(aAB);
(a+B)Ay=aAy+BAYy;
aN(B+7y)=aAB+aAy;
alNfB=—FAa;
alNa=0.

(What these equations technically mean is that if you evaluate each side at the same point and vectors,
then you'll get the same result on both sides.) So if you treat the wedge product as a kind of multiplica-
tion, then you can use the ordinary rules of algebra, so long as you keep track of the order of multiplica-
tion in the wedge product and throw in a minus sign whenever you reverse the order of multiplication of
two 1-forms.

To define a wedge product between forms of higher rank, you have to add and subtract all possible
permutations of the possible orders in which to write the vectors at which the result is evaluated. Keeping
track of all of this in a general formula is complicated, but the important point for our calculations is that
the rules above continue to apply, and additionally we have an associative law for wedge products:

(@AB) Ay =aA(BA7).

We will not actually need to evaluate these higher-rank forms in this course; what's necessary is to work
with them algebraically.
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The basic example that shows how to do this is the transformation between rectangular and polar
coordinates. Given

T =rcosb,

y =rsind,
we differentiate to get

dx = cosfdr — rsinfdé,
dy =sinfdr 4+ rcos6 db.

Given this, the algebra of the wedge product determines this calculation:

dz Ady = (cos@dr — rsinfdb) A (sinfdr + rcos 0 df)
= (cosfdr) A (sinf@dr) + (cos@dr) A (rcos8df) + (—rsinfdb) A (sinfdr) + (—rsinfdb) A (r cos 6 db)
= cosfsin @ (dr A dr) + rcos? 0 (dr A df) — rsin® 0 (d6 A dr) — r? sin 6 cos 0 (A6 A d6)
= cosfsinf (0) + rcos? 0 (dr A df) — rsin® 6 (—dr A df) — r?sin 6 cos 0 (0)
=0+ 7cos? 0 (dr Adh) + rsin® 6 (dr A df) + 0
= 7(cos® 0 +sin? ) dr A df
=rdrAdf.

With experience, you can do this sort of thing much faster; for example, you can immediately recognize
the terms that will become zero and skip them.
This is an example of changing coordinates in two variables; we can also use two variables to parametrize
a surface in three-dimensional space. For example, on the surface of the unit sphere (the sphere of ra-
dius 1 centred at (z,y,2z) = (0,0,0)), if we write z and y using r and 6 above, then we can further write

r = 1sin @,

z = 1cos ¢,

where the 1 indicates the radius of the sphere and the angle ¢ varies from 0 to 7. (In other words, I'm
using spherical coordinates with p = 1.) Differentiating,

dr = cos ¢ do,
dz = —sin ¢ do.
Thus,
dx Ady =rdr Adf =sin¢cospdeo A db,
dz A dz = (cosf cos ¢ de — sin ¢psin§df) A (—sin pde) = 0+ sin? psinf df A de,
dy A dz = (sin @ cos ¢ d¢ + sin ¢ cos 0 df) A (—sinpde) = 0 — sin® pcos 0 dd A de.
However,

dz Ady Adz = (sindcospdg A df) A (—sinpde) = sin® ¢ cos pdp A dg A df = 0.

This makes sense if dx A dy A dz represents something like a volume, since the volume of the surface of a
sphere is zero.

To see how dz A dy A dz indeed represents something like a volume, I should explain how to inte-
grate higher-rank differential forms. You typically integrate a differential form over a shape (or ‘manifold’)
whose dimension (as given by the number of parameters used to parametrize it) matches the rank of the
form. We have already seen this with rank-1 forms integrated over 1-dimensional curves, which can be
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parametrized by 1 parameter ¢t. In general, to integrate a rank-p form over a p-dimensional manifold (one
parametrized by p parameters), you divide the manifold up into pieces along the level curves (or surfaces)
of the parameters, for each piece evaluate the differential form at a point in that piece and at the vectors
across the piece along level curves through that point (evaluating du A dv first at the vector along which

u increases and then at the vector along which v increases), multiply by +1 according to the orientation
of the manifold (see the next paragraph), and then add these pieces up, taking the limit as the size of the
largest piece goes to zero. As with other Riemann integrals, this is guaranteed to exist if we're integrat-
ing something continuous on a manifold with a continuously differentiable parametrization that is compact
(closed and bounded), or anything that can be divided into finitely many pieces like this.

Here the orientation of the manifold indicates directions along it. In the case of a curve, there are
two ways to go along the curve, giving two orientations. In the case of a surface, if we start going in some
direction, then we can turn from that direction in one way or the other. In particular, the coordinate plane
can be oriented clockwise or counterclockwise. Ordinary three-dimensional space has right-handed and
left-handed orientations. In general, every small piece of a manifold has two orientations, no matter what
the dimension. A form such as du A dv matches the orientation if moving in the direction in which w in-
creases and then turning in the direction in which v increases matches the turning given by the orienta-
tion; if not, then we must use —1 for that piece.

In practice, we don't evaluate an integral as a limit of such sums; instead, we evaluate it as an iterat-
ed integral in the parameters. To do this, we simply set up limits of integration over the values that the
parameters can take and write down an iterated integral that makes sense, inserting a factor of —1 if the
orientation of the differential form is opposite that of the manifold. For example, to integrate do A dy =
sin ¢ cos ¢ d¢ A df on the top half of the unit sphere, oriented to turn clockwise when viewed from outside
the sphere, we start with

27
Jinl

but then, because we turn counterclockwise to move from a direction in which ¢ increases to a direction in
which 6 increases, the actual value is —.

In the textbook, you'll never be given directly differential forms to integrate. In some of Section 15.6
and much of the rest of Chapter 15, you integrate vector fields through surfaces; to integrate the vector
field F, you integrate the differential form F(xz,y, z) - dS, where

7'r/2 . 2r 1
L:O s1n¢cos¢d¢> 46 = LIO§ 46 = m;

1.
dS = —drxdr = (dy Adz,dz Adz,dz Ady) = or X @du/\dv
2 Oou  Ov

(where r = (x,y, z) as usual). This requires the use of the right-hand rule for the cross product; in oth-

er words, it involves an orientation of the ambient three-dimensional space (not to be confused with an
orientation of the surface itself). Properly, dS is a pseudoform, meaning that it must be given with an
orientation of the ambient space and changes sign if that orientation reverses. When using this pseudo-
form given with the right-handed orientation of space, we accordingly use the right-hand rule to convert
between a direction through the surface (which is a pseudoorientation) and an orientation on the sur-
face. So for example, to integrate the vector field F(x,y, z) = (0,0, 1) = k through the top half of the unit
sphere pseudooriented downwards is the same as integrating

F(z,y,2)-dS =(0,0,1) - (dy Adz,dz Adz,dz Ady) =0+ 0+ de Ady =dz Ady

on that hemisphere oriented clockwise (which T calculated above to be —).
In Section 15.5 and some of Section 15.6, you integrate scalar fields on surfaces; to integrate the scalar
field f, you integrate the differential form f(z,y, z) do, where

@ Or

do = |dS| = v/(dy A d2)? + (dz Adx)? + (do A dy)? = =
o =|ds| \/(y/\ 2)" + (dz Adz)” + (dz A dy) 8ux8v

|du A do).

Now orientation is irrelevant, instead, simply make sure that all parameters are increasing in the iterated
integral. It's possible to write ndo for dS, where n is a unit vector in the direction of dS, that is a unit
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vector perpendicular to the surface pointing in the direction given by its pseudoorientation. This is how
the book writes it, but actually calculating n and do is a waste of time if dS is all that you really want.

As for Chapter 14, here we are simply integrating scalar fields on the flat surface of the plane, using

dA = |dz A dy|
and on all of three-dimensional space, using
dV = |dz Ady A dz|.
So for example, in polar coordinates,
dA =|dx Ady| = |rdr Adb| =|r| |[dr AdO| =r |dr A dE)],

where the last step is valid if we only use non-negative values of r. You can also think of dA as dz A dy,
giving the plane its counterclockwise orientation, and similarly think of AV as dx A dy A dz, giving space

its right-handed orientation. This will be useful for some purposes later on, but for purposes of calcula-
tion, it's easier to use the absolute values so that you don't have to think about orientation.
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