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The wedge produ
t

The wedge produ
t of di�erential forms is kind of like the 
ross produ
t of ve
tors; however, instead of

trying to interpret it as another ve
tor (or a s
alar), we view it as another di�erential form of higher `rank'

than the original forms. The ordinary di�erential forms that we re used to are rank 1, and they 
an be

evaluted at a point and a ve
tor; to evaluate a di�erential form of rank 2, you need a point and 2 ve
tors.

If you keep going with more wedge produ
ts, then you get di�erential forms of even higher rank: to evalu-

ate a di�erential form of rank n, you need a point and n ve
tors.

The wedge produ
t also involves subtra
ting one thing from another (again like the 
ross produ
t); if

α and β are 1-forms (di�erential forms of rank 1, as we ve been using so far), P is a point, and v and w

are ve
tors, then

(α ∧ β)| R=P

dR=v,w

= α| R=P

dR=v

β| R=P

dR=w

− α| R=P

dR=w

β| R=P

dR=v

.

For example, if α = x2 dx+ xy dy, β = y2 dx− xy dy, P = (2, 3), v = 〈0.01, 0.04〉, and w = 〈−0.01, 0〉,
then

Ä

(x2 dx+ xy dy) ∧ (y2 dx− xy dx)
ä

∣

∣

∣ (x,y)=(2,3)
d(x,y)=〈0.01,0.04〉,〈−0.01,0〉

= (x2 dx+ xy dy)| (x,y)=(2,3)
〈dx,dy〉=〈0.01,0.04〉

(y2 dx− xy dy)| (x,y)=(2,3)
〈dx,dy〉=〈−0.01,0〉

− (x2 dx+ xy dy)| (x,y)=(2,3)
〈dx,dy〉=〈−0.01,0〉

(y2 dx− xy dy)| (x,y)=(2,3)
〈dx,dy〉=〈0.01,0.04〉

=
Ä

(2)
2
(0.01) + (2)(3)(0.04)

äÄ

(3)
2
(−0.01)− (2)(3)(0)

ä

−
Ä

(2)
2
(−0.01) + (2)(3)(0)

äÄ

(3)
2
(0.01)− (2)(3)(0.04)

ä

= (0.28)(−0.09)− (−0.04)(−0.15) = −0.0312.

A few basi
 properties of the wedge produ
t follow immediately (where α, β, γ are 1-forms and u is a

0-form, that is an ordinary non-di�erential quantity):

α ∧ (uβ) = (uα) ∧ β = u(α ∧ β);

(α+ β) ∧ γ = α ∧ γ + β ∧ γ;

α ∧ (β + γ) = α ∧ β + α ∧ γ;

α ∧ β = −β ∧ α;

α ∧ α = 0.

(What these equations te
hni
ally mean is that if you evaluate ea
h side at the same point and ve
tors,

then you ll get the same result on both sides.) So if you treat the wedge produ
t as a kind of multipli
a-

tion, then you 
an use the ordinary rules of algebra, so long as you keep tra
k of the order of multipli
a-

tion in the wedge produ
t and throw in a minus sign whenever you reverse the order of multipli
ation of

two 1-forms.

To de�ne a wedge produ
t between forms of higher rank, you have to add and subtra
t all possible

permutations of the possible orders in whi
h to write the ve
tors at whi
h the result is evaluated. Keeping

tra
k of all of this in a general formula is 
ompli
ated, but the important point for our 
al
ulations is that

the rules above 
ontinue to apply, and additionally we have an asso
iative law for wedge produ
ts:

(α ∧ β) ∧ γ = α ∧ (β ∧ γ).

We will not a
tually need to evaluate these higher-rank forms in this 
ourse; what s ne
essary is to work

with them algebrai
ally.
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The basi
 example that shows how to do this is the transformation between re
tangular and polar


oordinates. Given

x = r cos θ,

y = r sin θ,

we di�erentiate to get

dx = cos θ dr − r sin θ dθ,

dy = sin θ dr + r cos θ dθ.

Given this, the algebra of the wedge produ
t determines this 
al
ulation:

dx ∧ dy = (cos θ dr − r sin θ dθ) ∧ (sin θ dr + r cos θ dθ)

= (cos θ dr) ∧ (sin θ dr) + (cos θ dr) ∧ (r cos θ dθ) + (−r sin θ dθ) ∧ (sin θ dr) + (−r sin θ dθ) ∧ (r cos θ dθ)

= cos θ sin θ (dr ∧ dr) + r cos2 θ (dr ∧ dθ)− r sin2 θ (dθ ∧ dr)− r2 sin θ cos θ (dθ ∧ dθ)

= cos θ sin θ (0) + r cos2 θ (dr ∧ dθ)− r sin2 θ (−dr ∧ dθ)− r2 sin θ cos θ (0)

= 0 + r cos2 θ (dr ∧ dθ) + r sin2 θ (dr ∧ dθ) + 0

= r(cos2 θ + sin2 θ) dr ∧ dθ

= r dr ∧ dθ.

With experien
e, you 
an do this sort of thing mu
h faster; for example, you 
an immediately re
ognize

the terms that will be
ome zero and skip them.

This is an example of 
hanging 
oordinates in two variables; we 
an also use two variables to parametrize

a surfa
e in three-dimensional spa
e. For example, on the surfa
e of the unit sphere (the sphere of ra-

dius 1 
entred at (x, y, z) = (0, 0, 0)), if we write x and y using r and θ above, then we 
an further write

r = 1 sinφ,

z = 1 cosφ,

where the 1 indi
ates the radius of the sphere and the angle φ varies from 0 to π. (In other words, I m

using spheri
al 
oordinates with ρ = 1.) Di�erentiating,

dr = cosφ dφ,

dz = − sinφ dφ.

Thus,

dx ∧ dy = r dr ∧ dθ = sinφ cosφ dφ ∧ dθ,

dx ∧ dz = (cos θ cosφ dφ− sinφ sin θ dθ) ∧ (− sinφ dφ) = 0 + sin2 φ sin θ dθ ∧ dφ,

dy ∧ dz = (sin θ cosφ dφ+ sinφ cos θ dθ) ∧ (− sinφ dφ) = 0− sin2 φ cos θ dθ ∧ dφ.

However,

dx ∧ dy ∧ dz = (sinφ cosφ dφ ∧ dθ) ∧ (− sinφ dφ) = sin2 φ cosφ dφ ∧ dφ ∧ dθ = 0.

This makes sense if dx ∧ dy ∧ dz represents something like a volume, sin
e the volume of the surfa
e of a

sphere is zero.

To see how dx ∧ dy ∧ dz indeed represents something like a volume, I should explain how to inte-

grate higher-rank di�erential forms. You typi
ally integrate a di�erential form over a shape (or `manifold')

whose dimension (as given by the number of parameters used to parametrize it) mat
hes the rank of the

form. We have already seen this with rank-1 forms integrated over 1-dimensional 
urves, whi
h 
an be
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parametrized by 1 parameter t. In general, to integrate a rank-p form over a p-dimensional manifold (one

parametrized by p parameters), you divide the manifold up into pie
es along the level 
urves (or surfa
es)

of the parameters, for ea
h pie
e evaluate the di�erential form at a point in that pie
e and at the ve
tors

a
ross the pie
e along level 
urves through that point (evaluating du ∧ dv �rst at the ve
tor along whi
h

u in
reases and then at the ve
tor along whi
h v in
reases), multiply by ±1 a

ording to the orientation

of the manifold (see the next paragraph), and then add these pie
es up, taking the limit as the size of the

largest pie
e goes to zero. As with other Riemann integrals, this is guaranteed to exist if we re integrat-

ing something 
ontinuous on a manifold with a 
ontinuously di�erentiable parametrization that is 
ompa
t

(
losed and bounded), or anything that 
an be divided into �nitely many pie
es like this.

Here the orientation of the manifold indi
ates dire
tions along it. In the 
ase of a 
urve, there are

two ways to go along the 
urve, giving two orientations. In the 
ase of a surfa
e, if we start going in some

dire
tion, then we 
an turn from that dire
tion in one way or the other. In parti
ular, the 
oordinate plane


an be oriented 
lo
kwise or 
ounter
lo
kwise. Ordinary three-dimensional spa
e has right-handed and

left-handed orientations. In general, every small pie
e of a manifold has two orientations, no matter what

the dimension. A form su
h as du ∧ dv mat
hes the orientation if moving in the dire
tion in whi
h u in-


reases and then turning in the dire
tion in whi
h v in
reases mat
hes the turning given by the orienta-

tion; if not, then we must use −1 for that pie
e.

In pra
ti
e, we don t evaluate an integral as a limit of su
h sums; instead, we evaluate it as an iterat-

ed integral in the parameters. To do this, we simply set up limits of integration over the values that the

parameters 
an take and write down an iterated integral that makes sense, inserting a fa
tor of −1 if the

orientation of the di�erential form is opposite that of the manifold. For example, to integrate dx ∧ dy =
sinφ cosφ dφ ∧ dθ on the top half of the unit sphere, oriented to turn 
lo
kwise when viewed from outside

the sphere, we start with w 2π

θ=0

Åw π/2

φ=0
sinφ cosφ dφ

ã

dθ =
w 2π

θ=0

1

2
dθ = π;

but then, be
ause we turn 
ounter
lo
kwise to move from a dire
tion in whi
h φ in
reases to a dire
tion in

whi
h θ in
reases, the a
tual value is −π.

In the textbook, you ll never be given dire
tly di�erential forms to integrate. In some of Se
tion 15.6

and mu
h of the rest of Chapter 15, you integrate ve
tor �elds through surfa
es; to integrate the ve
tor

�eld F, you integrate the di�erential form F(x, y, z) · d̄S, where

d̄S =
1

2
dr×̂dr = 〈dy ∧ dz, dz ∧ dx, dx ∧ dy〉 =

∂r

∂u
×

∂r

∂v
du ∧ dv

(where r = 〈x, y, z〉 as usual). This requires the use of the right-hand rule for the 
ross produ
t; in oth-

er words, it involves an orientation of the ambient three-dimensional spa
e (not to be 
onfused with an

orientation of the surfa
e itself). Properly, d̄S is a pseudoform, meaning that it must be given with an

orientation of the ambient spa
e and 
hanges sign if that orientation reverses. When using this pseudo-

form given with the right-handed orientation of spa
e, we a

ordingly use the right-hand rule to 
onvert

between a dire
tion through the surfa
e (whi
h is a pseudoorientation) and an orientation on the sur-

fa
e. So for example, to integrate the ve
tor �eld F(x, y, z) = 〈0, 0, 1〉 = k through the top half of the unit

sphere pseudooriented downwards is the same as integrating

F(x, y, z) · d̄S = 〈0, 0, 1〉 · 〈dy ∧ dz, dz ∧ dx, dx ∧ dy〉 = 0 + 0 + dx ∧ dy = dx ∧ dy

on that hemisphere oriented 
lo
kwise (whi
h I 
al
ulated above to be −π).

In Se
tion 15.5 and some of Se
tion 15.6, you integrate s
alar �elds on surfa
es; to integrate the s
alar

�eld f , you integrate the di�erential form f(x, y, z) d̄σ, where

d̄σ = |d̄S| =
»

(dy ∧ dz)
2
+ (dz ∧ dx)

2
+ (dx ∧ dy)

2
=

∣

∣

∣

∣

∂r

∂u
×

∂r

∂v

∣

∣

∣

∣

|du ∧ dv|.

Now orientation is irrelevant, instead, simply make sure that all parameters are in
reasing in the iterated

integral. It s possible to write n d̄σ for d̄S, where n is a unit ve
tor in the dire
tion of d̄S, that is a unit
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ve
tor perpendi
ular to the surfa
e pointing in the dire
tion given by its pseudoorientation. This is how

the book writes it, but a
tually 
al
ulating n and d̄σ is a waste of time if d̄S is all that you really want.

As for Chapter 14, here we are simply integrating s
alar �elds on the �at surfa
e of the plane, using

d̄A = |dx ∧ dy|

and on all of three-dimensional spa
e, using

d̄V = |dx ∧ dy ∧ dz|.

So for example, in polar 
oordinates,

d̄A = |dx ∧ dy| = |r dr ∧ dθ| = |r| |dr ∧ dθ| = r |dr ∧ dθ|,

where the last step is valid if we only use non-negative values of r. You 
an also think of d̄A as dx ∧ dy,
giving the plane its 
ounter
lo
kwise orientation, and similarly think of d̄V as dx ∧ dy ∧ dz, giving spa
e

its right-handed orientation. This will be useful for some purposes later on, but for purposes of 
al
ula-

tion, it s easier to use the absolute values so that you don t have to think about orientation.
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