
Notes Math-2080-es31 2015 January 12

De�nitions for fun
tions of several variables

In order to form pre
ise de�nitions of various 
on
epts related to fun
tions of several variables, it s handy

to piggyba
k on the de�nitions for fun
tions of one variable. This is not the way that the book writes its

de�nitions, but it s the way that I prefer. So here are my de�nitions.

General prin
iples

Re
all that a parametrized 
urve, or point-valued fun
tion, takes a number to a point (in however

many dimensions we re dealing with, typi
ally 2 or 3 dimensions). That is, if C is a parametrized 
urve

and a is a real number, then C(a) is a point P = (x, y) or P = (x, y, z). (assuming that we re dealing with

2 or 3 dimensions). Meanwhile, a fun
tion of several variables (however many variables we re dealing with,

typi
ally 2 or 3 variables) takes a point to a number; that is, if f is a fun
tion of (say) 2 or 3 variables and

P = (x, y) or P = (x, y, z) is a point in 2 or 3 dimensions, then f(P ) = f(x, y) or f(x, y, z) is a real num-

ber c. If we 
ombine these by 
omposition, then f ◦ C is an ordinary fun
tion; that is, if a is a real num-

ber, then so is (f ◦ C)(a):

(f ◦ C)(a) = f
Ä

C(a)
ä

= f(P ) = c.

From one-variable Cal
ulus, you should know how to de�ne various 
on
epts (
ontinuity, limits, dif-

ferentiability, derivatives, di�erentials) for ordinary fun
tions. It s easy to extend these 
on
epts to ve
tor-

and point-valued fun
tions (parametrized 
urves), sin
e these simply 
onsist of several ordinary fun
tions

(the 
oordinates or 
omponents). So to de�ne these 
on
epts for fun
tions of several variables, we typi
al-

ly use a formula like this:

If f ◦ C has a 
ertain property whenever C does, no matter what C might be (as long as it has

the property), then that s what it means for f to have that property.

This formula doesn t always work perfe
tly; for one thing, we often want to say more than just a Yes/No

property, and it may not be obvious what matters about C or how to extra
t the appropriate information

from the 
omposites. Besides that, even when this formula would make perfe
t sense, sometimes some of

the ni
e theorems that we would expe
t aren t always true, whi
h means that we should look for a mod-

ifed de�nition that makes the theorems work. (That s what mathemati
ians really want from a de�nition:

they re not handed down from on high but developed for the purpose of getting 
orre
t results.) Neverthe-

less, all of the de�nitions here will be based on something like this formula.

Continuity

Continuity follows the general formula pre
isely. A fun
tion f of several variables is 
ontinuous if, when-

ever C is a 
ontinuous parametrized 
urve, the 
omposite f ◦ C is a 
ontinuous fun
tion. (It wouldn t be

fair to expe
t f ◦ C to be 
ontinuous unless C is 
ontinuous as well as f , but if both C and f are 
ontinu-

ous, then their 
omposite ought to be as well.)

Sometimes we want to look at 
ontinuity in more detail; in general, to say that a fun
tion is 
ontinu-

ous really means that it s 
ontinuous at every number in its domain. So for a fun
tion of several variables,

we want to talk about 
ontinuity at parti
ular points in its domain. A fun
tion f is 
ontinuous at a

point P in the domain of f if, whenever C is a parametrized 
urve and a is a number su
h that C(a) = P

and C is 
ontinuous at a, then f ◦ C is also 
ontinuous at a. Again, it wouldn t be fair to demand more

than this if we re only asking f to be 
ontinuous at P .

An equivalent de�nition is to say that f is 
ontinuous at P if f is deifned at P and, for every positive

number ǫ, there is some positive number δ su
h that, whenever |Q− P | < δ and f is de�ned at Q, then

|f(Q)− f(P )| < ǫ. However, this is rather less fun to work with. Ultimately, you have to say something

like this some time, but I prefer to say it on
e, when giving the �rst de�nition in one-variable Cal
ulus,

and then never again.

Any fun
tion with a formula that is built out of the 
oordinate variables using only the usual oper-

ations is 
ontinuous wherever it is de�ned. (To be de�nite, the usual operations are addition, opposites,
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subtra
tion, multipli
ation, re
ipro
als, division, absolute values, powers with 
onstant exponents, pow-

ers with positive bases, roots with 
onstant indexes, roots with 
onstant radi
ands, logarithms, the six

trigonometri
 operations, and the six inverse trigonometri
 operations. Some ex
eptions to this in
lude

pie
ewise de�nitions and powers where the exponent varies and the base may be zero or negative.) To

prove this, you use the 
ontinuity of ea
h 
omponent of a 
ontinuous parameterized 
urve and the one-

variable theorem that any fun
tion built out of 
ontinuous fun
tions using these operations is 
ontinuous.

Limits

To keep things simple, I ll only look at �nite limits approa
hing a �nite value; none of our limits will in-

volve in�nity in any role. (I ll make things more 
ompli
ated in another way shortly!)

There is a te
hni
ality about limits that s often ignored in one-variable 
al
ulus, whi
h is that the ex-

pression whose limit you re taking must be de�ned at numbers arbitrarily 
lose to the number that the

variable is approa
hing. It s often treated as a big deal that the fun
tion doesn t have to be de�ned at

that number pre
isely, whi
h is 
ertainly true and important, but it still has to be de�ned near that num-

ber. For example (and assuming that we re only working with real numbers), you 
an t talk about the

limit of

√
x as x → −1, be
ause x 
an t get very 
lose to −1 while

√
x is de�ned. On the other hand, it s

�ne to talk about the limit as x → 0, be
ause even though

√
x is unde�ned when x < 0, still

√
x is de-

�ned when x > 0, whi
h allows x to get arbitrarily 
lose to 0. (But on the other other hand, you 
an t talk

about the limit as x → 0−, be
ause now this requires x < 0, whi
h leaves

√
x unde�ned again.)

A number a is a limit point of a set D if it makes sense to talk about a fun
tion de�ned on D as

having a limit approa
hing a, in other words if there exists a fun
tion whose domain is D (a 
onstant

fun
tion will do) that has a limit approa
hing a. (The term `limit point' is traditional even in one di-

mension, even though we normally 
all a a number rather than a point.) This is equivalent to saying that

there are numbers in D (other than possibly a itself) that are arbitrarily 
lose to a, in other words if, giv-

en any positive distan
e δ > 0, there is at least some number b in the set D su
h that 0 < |b− a| < δ. But

I prefer to think of the de�nition that has no δ (or ǫ) in it.

Keeping this te
hni
ality in mind, the limit approa
hing a point P of a fun
tion f of several variables

(whi
h in symbols we 
an write as

lim
(x,y)→P

f(x, y)

or

lim
(x,y,z)→P

f(x, y, z)

in 2 or 3 dimensions) is the unique number L (if this exists) su
h that, whenever C is a parametrized 
urve

and a is a number, if C(t) = P when and only when t = a, and if C is 
ontinuous at a, and if a is a limit

point of f ◦ C, then L is the limit of f ◦ C approa
hing a. In other words (ignoring the �ne print), when-

ever

lim
t→a

C(t) = P ,

then

lim
t→a

f
Ä

C(t)
ä

= L.

The limit of one of these 
omposites is basi
ally the limit of the fun
tion along a parti
ular 
urve.

If the fun
tion is unde�ned along the 
urve, then we don t expe
t its limit to exist, and this is what the


lause about limit points takes 
are of. We also don t want to worry about f(P ), sin
e f might not be


ontinuous, whi
h is why C(a) is not allowed to be P ex
ept when t = a. Then, in order for the limit to

exist overall, the limit must exist along ea
h appropriate 
urve and be the same along all of them.

If for any appropriate 
urve, there is no limit along that 
urve, then the limit overall does not exist.

Besides that, if there are two su
h 
urves su
h that the limits along them are di�erent, then again the lim-

it does not exist overall. It is in this way that one generally proves that a limit does not exist, when it

doesn t . When the limits does exist, however, then you usually need to �nd a general argument to show

that it does and what it is, be
ause you 
an t a
tually 
he
k every individual 
urve.

One often talks about limits with restri
tions on the manner of approa
hing the point. For example,

instead of saying (x, y) approa
hes (2, 3), we might say that (x, y) approa
hes (2, 3) while x 6= y. Te
hni-


ally, this is handled by modifying the fun
tion so that it is unde�ned when x = y (in this 
ase).
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Di�erentiability

The way that di�erentiability �ts in with 
omposition of fun
tions is the 
hain rule (f ◦ g)′(x) = f ′

Ä

g(x)
ä

g′(x).
Following the general prin
iple, we repla
e g with a parametrized 
urve C, and the values of the deriva-

tives of this (repla
ing g′(x)) are ve
tors. However, the 
omposite is an ordinary fun
tion, so the deriva-

tive of f should multiply by a ve
tor to get a s
alar. One way to do this is to multiply a ve
tor by a ve
-

tor with the dot produ
t, so the derivative of a fun
tion of several variables should be a ve
tor. There are

a
tually several sorts of derivatives in higher dimensions, and I ll 
ome ba
k to this subje
t later; but the

one whi
h is a ve
tor will provide the de�nition of di�erentiability.

We say that the fun
tion f is di�erentiable at some point P if there exists a ve
tor v su
h that,

whenever C is a parametrized 
urve and a is a number su
h that C(a) = P and C is di�erentiable at a,

then f ◦ C is also di�erentiable at a and furthermore (f ◦ C)
′

(a) = v · C ′(a). If f is di�erentiable at every

point P in its domain, then f is simply di�erentiable.

This ve
tor v is 
alled the gradient of f at P and may be written as ∇f(P ) (although f ′(P ) would
make a lot of sense), so the rule is

(f ◦ C)
′

(a) = ∇f(P ) · C ′(a).

Higher di�erentiability

If a fun
tion f is di�erentiable, or more generally where it is di�erentiable, the 
omponents of its gradients

de�ne some more fun
tions, 
alled the partial derivatives of f . (We will look at these partial derivatives

more later on.) Wherever the partial derivatives are themselves 
ontinuous, the original fun
tion is 
on-

tinuously di�erentiable. Where the partial derivatives are themselves di�erentiable, the original fun
-

tion is twi
e di�erentiable. Where the partial derivatives are 
ontinuously di�erentiable, the original

fun
tion is twi
e 
ontinuously di�erentiable. Et
 et
 et
.

Where this goes on forever, the fun
tion is in�nitely di�erentiable. Any fun
tion built out of the

usual operations is in�nitely di�erentiable ex
ept at 
ertain ex
eptional pla
es where a derivative fails to

exist, su
h as when taking the absolute value or square root of zero. But to prove this, it s best to look at

how to 
al
ulate the derivatives, whi
h I ll 
ome ba
k to later on.
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