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Fubini theorems

I want to re
ord here some theorems about double (and higher) Riemann integrals, 
ulminating in using

the Fubini theorems to turn them into iterated integrals.

First, I want to note some notation that is a little more pre
ise than the notation in the textbook.

The notation in the textbook is very 
ommon, and it s usually quite 
lear what it means, but it s not good

enough if you want to be 
ompletely unambiguous about what variables you re using and where. So rather

than write, for example, x
D
f(x, y) dA,

where D is a region in 2 dimensions (formally a relation between 2 variables) and f is a fun
tion of 2 vari-

ables, I ll write w
(x,y)∈D

f(x, y) |dx ∧ dy|.

So to begin with, sin
e the integrand (all of the stu� after the integral symbols) makes it 
lear that there

are 2 variables of integration, it s not ne
essary to repeat the integral symbol. But just as we write f(x, y)
(rather than just f) after that symbol to indi
ate the value of the fun
tion f at parti
ular values of the

variables x and y (rather than its value somewhere else), so I write (x, y) ∈ D (rather than just D) be-

neath that symbol to indi
ate that the point whose 
oordinates are those values (rather than some other

point) belongs to the region D.

At the end, sin
e dA (and dV in 3 dimensions) don t indi
ate whi
h variables are being used, I use

the notation |dx ∧ dy| (or |dx ∧ dy ∧ dz| in 3 dimensions). This notation is more 
ompli
ated than ne
-

essary just to indi
ate the variables, but there is a reason for it; just as the notation dy/dx for a deriva-

tive is not merely an arbitrary symbol but 
an be literally understood as the result of dividing expressions

(
alled di�erentials) obtained by applying an operator d, so the notation |dx ∧ dy| for an area element (or

|dx ∧ dy ∧ dz| for a volume element) is not merely an arbitrary symbol but 
an be literally understood as

the absolute value of an expression (
alled an exterior di�erential form) involving an operator ∧. However,

don t worry about that for now; just treat it as a notation used to indi
ate pre
isely whi
h variables are

used in the area (or volume) element.

Using that notation, here are the important theorems:

1 The integral of a 
ontinuous fun
tion on a 
ompa
t (that is 
losed and bounded) region always exists:r
(x,y)∈D

f(x, y) |dx ∧ dy| exists if f is 
ontinuous and D is 
ompa
t (and similarly in more variables).

2 If two regions D1 and D2 are 
ompletely disjoint (no overlap at all), or if their overlap is 
ontained

within a single point/line/plane/et
 of fewer dimensions than the overall number of variables, and if a

fun
tion f has integrals on both of these regions, then the integral of f on their union (the 
ombined

region D1 ∪D2) also exists and is the sum of the separate integrals:

w
(x,y)∈D1∪D2

f(x, y) |dx ∧ dy| =
w
(x,y)∈D1

f(x, y) |dx ∧ dy|+
w
(x,y)∈D2

f(x, y) |dx ∧ dy|

(and similarly in more variables) if the integrals on the right exist and the overlap is small.

3 In any double (or higher) integral, if two of the variables are swapped in both the fun
tion being in-

tegrated and in the region over whi
h it is integrated (or equivalently, by renaming the variables, by

swapping the variables only with the area/volume/et
 element), then the result is the same (so that if

either integral exists, then so does the other, and then they are equal):

w
(x,y)∈D

f(x, y) |dx ∧ dy| =
w
(x,y)∈D

f(x, y) |dy ∧ dx|

(and similarly in more variables).
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4 For a region D in 2 dimensions, if there are 
onstants a and b with a ≤ b and 
ontinuous fun
tions g

and h (ea
h of 1 variable) su
h that (x, y) ∈ D if and only if a ≤ x ≤ b and g(x) ≤ y ≤ h(x), and if

g(x) ≤ h(x) whenever a ≤ x ≤ b, then the integral of any 
ontinuous fun
tion f on D is the same as

the 
orresponding iterated integral:

w
(x,y)∈D

f(x, y) |dx ∧ dy| =
w b

x=a

Åw h(x)

y=g(x)
dy

ã

dx.

5 For a region D in 3 (or more) variables, if there are a 
ompa
t region R in 2 variables (or in general

a 
ompa
t region of one fewer dimension) and 
ontinuous fun
tions g and h of 2 variables ea
h (or in

general with the same number of variables as R has dimensions) su
h that (x, y, z) ∈ D if and only if

(x, y) ∈ R and g(x, y) ≤ z ≤ h(x, y), and if g(x, y) ≤ h(x, y) whenever (x, y) ∈ R, then the integral of

any 
ontinuous fun
tion f on D is the same as the 
orresponding iterated integral:

w
(x,y,z)∈D

f(x, y, z) |dx ∧ dy ∧ dz| =
w
(x,y)∈R

Åw h(x,y)

z=g(x,y)
f(x, y, z) dz

ã

|dx ∧ dy|

(and similarly in more variables).

The last two of these are the Fubini Theorem (for Riemann integrals of 
ontinuous fun
tions).

By itself, the Fubini Theorem only works for regions of parti
ular shapes, but the other theorems


ombine to make it more useful. First of all, Theorem 3 allows us to put the variables in whatever order

we like. Even so, the regions still require parti
ular shapes; we 
an just orient those however we wish.

Theorem 2, in prin
iple, allows us to divide a region up into smaller regions appropriate for the Fubini

Theorem; the only question is whether the integrals exist. Theorem 1 guarantees this existen
e for 
on-

tinuous fun
tions.

So using these in order, if you want to integrate over a 
razy region, then divide the region into pie
es

of suitable shape. If the fun
tion is 
ontinuous and these smaller regions are all 
ompa
t, then you know

that their integrals exist; and if the regions overlap only slightly, then you 
an re
over the answer to the

original problem by adding them up. Finally, to get the integrals on these small regions, think of the vari-

ables as 
oming in whi
hever order works best, and use the Fubini Theorem (possibly more than on
e) to

repla
e double and triple integrals with iterated integrals. Hopefully, these will be integrals that you 
an

do!
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