MATH-2080-WBP01
Welcome to the permanent home page
for Section WBP01 of MATH-2080 (Calculus 3)
at Southeast Community College
in the Fall term of 2022.
I am Toby Bartels, your instructor.
Course administration
Contact information
Feel free to send a message at any time,
even nights and weekends (although I'll be slower to respond then).
Readings
The official textbook for the course
is the 4th Edition of University Calculus: Early Transcendentals
by Hass et al published by Addison Wesley (Pearson).
You automatically get an online version of this textbook through Canvas,
although you can use a print version instead if you like.
This comes with access to Pearson MyLab, integrated into Canvas,
on which many of the assignments appear.
There is also a packet of course notes (DjVu).
Curves and functions
- General review:
- Reading from the textbook:
As needed: Review §§11.1–11.5.
- Reading from my notes: Optional: Through Chapter 1 (pages 1–17).
- Online notes: Required: Vector operations.
- Exercises due on August 23 Tuesday (submit these on Canvas):
- Give a formula
for the vector
from the point (x1, y1)
to the point (x2, y2).
- If u and v are vectors in 2 dimensions,
then is u × v a scalar or a vector?
- If u and v are vectors in 3 dimensions,
then is u × v a scalar or a vector?
- Exercises from the textbook due on August 24 Wednesday
(submit these through MyLab):
O.1.1, O.1.2, O.1.3, O.1.4, O.1.5, O.1.6, O.1.7, O.1.8, O.1.10, O.1.11,
O.1.12, 11.2.5, 11.3.1, 11.4.1, 11.4.15, 11.5.23, 11.5.39.
- Parametrized curves:
- Reading from the textbook:
Chapter 12 through Section 12.1 (pages 662–668).
- Reading from my notes:
Chapter 2 through the first half of Section 2.1
(all of page 19 and the first two lines of page 20).
- Exercises due on August 24 Wednesday (submit these on Canvas):
- If C is a point-valued function,
so that P = C(t) is a point
(for each scalar value of t),
then what type of value does its derivative C′ take?;
that is,
is dP/dt = C′(t)
a point, a scalar, a vector, or what?
- If c is a vector-valued function,
so that r = c(t) is a vector
(for each scalar value of t),
then what type of value does its derivative c′ take?;
that is,
is dr/dt = c′(t)
a point, a scalar, a vector, or what?
- Exercises from the textbook due on August 25 Thursday
(submit these through MyLab):
12.1.5, 12.1.7, 12.1.9, 12.1.11, 12.1.15, 12.1.17, 12.1.19,
12.1.21, 12.1.23, 12.1.24, 12.1.37.
- Standard parametrizations:
- Reading: Online notes.
- Exercises due on August 25 Thursday (submit these on Canvas):
- For the oriented line segment
from (x1, y1)
to (x2, y2),
write down the usual parametrization.
- More generally,
for the oriented line segment
from P1 to P2,
write down the usual parametrization.
- For the circle in the 2-dimensional plane
whose centre is (h, k) and whose radius is r,
write down the usual parametrization.
- If f is continuous function
whose domain is [a, b],
write down the usual parametrization for the graph of f.
- Exercises from the textbook due on August 26 Friday
(submit these through MyLab):
15.1.1, 15.1,3, 15.1.5, 15.1.7.
- Integrating parametrized curves:
- Reading from the textbook: Section 12.2 (pages 671–675).
- Reading from my notes:
The second half of Section 2.1 (the rest of page 20).
- Exercises due on August 29 Monday (submit these on Canvas):
If f is a vector-valued function,
so that v = f(t) is a vector
(for each scalar value of t),
then:
- What type of value can its definite integrals take?;
that is,
can
∫bt=a f(t) dt =
∫bt=a v dt
(where a and b are scalars)
be a point, a scalar, a vector, or what?
- What type of value can its indefinite integrals take?;
that is,
can
∫ f(t) dt =
∫ v dt
be a point, a scalar, a vector, or what?
- Exercises from the textbook due on August 30 Tuesday
(submit these through MyLab):
12.2.1, 12.2.3, 12.2.11, 12.2.17, 12.2.21, 12.2.25, 12.2.26.
- Arclength:
- Reading from the textbook: Section 12.3 (pages 678–680).
- Reading from my notes: Section 2.4 (pages 23&24).
- Exercises due on August 30 Tuesday (submit these on Canvas):
Section 12.3 of the textbook uses several variables,
including r, s, t, T, and v,
to describe various quantities on the path of a parametrized curve.
Fill in the right-hand side of each of these equations
with the appropriate one of these variables:
- dr/dt = ___.
- v/|v| = ___.
- dr/ds = ___.
- Exercises from the textbook due on August 31 Wednesday
(submit these through MyLab):
12.3.1, 12.3.5, 12.3.8, 12.3.9, 12.3.11, 12.3.14, 12.3.18.
- Matrices:
- Reading from my notes: Section 1.13 (page 17).
- Exercises due on August 31 Wednesday (submit these on Canvas):
Fill in the blanks with words or short phrases:
- Suppose that A and B are matrices.
The matrix product AB exists
if and only if the number of _____ of A
is equal to the the number of _____ of B.
- Suppose that v and w
are vectors in Rn.
Let A be a 1-by-n row matrix
whose entries are the components of v,
and let B be an n-by-1 column matrix
whose entries are the components of w.
Then AB is a 1-by-1 matrix
whose entry is the _____ of v and w.
- Exercises from an external website due on September 1 Thursday:
Take
the
Mathopolis
quiz
on multiplying matrices,
and submit
a message
on Canvas
telling me how it went.
- Functions of several variables:
- Reading from my notes:
Chapter 3 through Section 3.1 (pages 27–29).
- Reading from the textbook:
- Chapter 13 through Section 13.1 "Domains and Ranges"
(pages 697&698);
- Section 13.1
"Graphs, Level Curves, and Contours of Functions of Two Variables"
through the end of Section 13.1
(pages 700–702).
- Exercises due on September 1 Thursday (submit these on Canvas):
- If f(2, 3) = 5,
then what number or point must belong to the domain of f
and what number or point must belong to the range of f?
- If f(2, 3) = 5,
then what point must be on the graph of f?
- Exercises from the textbook due on September 2 Friday
(submit these through MyLab):
13.1.3, 13.1.5, 13.1.6, 13.1.8, 13.1.11, 13.1.14, 13.1.16,
13.1.31, 13.1.33, 13.1.34, 13.1.39, 13.1.41, 13.1.43,
13.1.51, 13.1.53, 13.1.59, 13.1.61.
- Topology in several variables:
- Reading from the textbook:
Section 13.1 "Functions of Two Variables" (pages 698&699).
- Reading from my notes: Sections 3.2&3.3 (pages 29&30).
- Exercises due on September 6 Tuesday (submit these on Canvas):
Let R be a relation,
thought of as a set of points in Rn.
Recall that a point P
is in the boundary (or frontier) of R
if, among the points arbitrarily close to P (including P itself),
there are both at least one point in R and one point not in R.
For each of the following examples,
state whether R is open (Yes or No)
and whether R is closed (Yes or No):
- There is at least one point in the boundary of R,
and all of them are in R.
- There is at least one point in the boundary of R,
and none of them are in R.
- There are points in the boundary of R,
and at least one of them is in R and at least one of them is not.
- There are no points in the boundary of R.
- Exercises from the textbook due on September 7 Wednesday
(submit these through MyLab):
13.1.17, 13.1.19, 13.1.23, 13.1.25, 13.1.27,
13.2.31, 13.2.33, 13.2.35, 13.2.39.
- Limits in several variables:
- Section 13.2 (pages 705–711).
- Reading from my notes: Section 3.4 (pages 30&31).
- Exercises due on September 7 Wednesday
(submit these on Canvas):
- Suppose that the limit of f approaching (2, 3) is 5
(in symbols,
lim(x,y)→(2,3) f(x, y) =
5),
and the limit of g approaching (2, 3) is 7
(so
lim(x,y)→(2,3) g(x, y) =
7).
What (if anything)
is the limit of f + g approaching (2, 3)?
(so
lim(x,y)→(2,3) (f(x, y) + g(x, y)) =
___).
- Suppose that the limit of f approaching (0, 0) horizontally
is 4
(in symbols,
lim(x,y)→(0,0),y=0 f(x, y) =
4),
and the limit of f approaching (0, 0) vertically is 6
(so
lim(x,y)→(0,0),x=0 f(x, y) =
6).
What (if anything) is the limit of f approaching (0, 0)?
(so
lim(x,y)→(0,0) f(x, y) =
___).
- Exercises from the textbook due on September 8 Thursday
(submit these through MyLab):
13.2.1, 13.2.5, 13.2.13, 13.2.17, 13.2.25,
13.2.27, 13.2.43, 13.2.47, 13.2.59.
- Vector fields:
- Reading from the textbook:
Section 15.2 through "Vector Fields"
(pages 854&855 and Figures 15.7–15.16),
except Figure 15.11.
- Online notes: Examples of vector fields.
- Exercises due on September 8 Thursday (submit these on Canvas):
Sketch a graph of the following vector fields:
- F(x, y) =
〈x, y〉 =
xi + yj;
- G(x, y) =
〈−y, x〉 =
−yi + xj.
- Exercises from the textbook due on September 9 Friday
(submit these through MyLab):
15.2.5, 15.2.47, 15.2.49, 15.2.51.
- Linear differential forms:
- Reading from my notes:
Chapter 4 through Section 4.3 (pages 33&34).
- Exercises due on September 12 Monday (submit these on Canvas):
- Given
F(x, y, z) =
〈u, v, w〉,
express
F(x, y, z) ⋅ d(x, y, z)
as a differential form.
- Given
G(x, y) =
〈M, N〉,
express
G(x, y) ⋅ d(x, y)
and
G(x, y) × d(x, y)
as differential forms.
- Exercises not from the textbook due on September 13 Tuesday
(submit these on Canvas too):
- Evaluate
3x dx +
4x2y dy
at (x, y) = (2, 6)
along
〈dx, dy〉 = 〈0.003, 0.005〉.
(Answer.)
- Evaluate
2xy dx +
2yz dy + 2xz dz
at
(x, y, z) =
(−1, 3, 2)
along
〈dx, dy, dz〉 =
〈0.01, 0.02, −0.01〉.
- Evaluate
x2 dx +
xy dy + xz dz
at
(x, y, z) =
(4, 3, −2).
(Answer.)
- Evaluate
5x2 dx −
3xy dy
at (x, y) = (1, 2).
Quiz 1, covering the material in Problem Sets 1–12,
is available on September 16 Friday.
Differentiation
- Differentials:
- Reading from my notes: Section 4.4 (pages 35&36).
- Exercises due on September 13 Tuesday (submit these on Canvas):
- If n is a constant,
write a formula for the differential of un
using n, u, and du.
- Write the differentials of u + v and uv
using u, v, du, and dv.
- If e ≈ 2.71828 is the natural base,
then write the differential of eu
using e, u, and du.
- Write
the differential of ln u = loge u
using u and du.
- Write the differentials of sin u and cos u
using u, du, and trigonometric operations.
- Exercises not from the textbook due on September 14 Wednesday
(submit these on Canvas too):
- Find the differential of 3x + 5y.
(Answer.)
- Find the differential of −2x + 6y.
- Find
d(3p2 − 4q − 18).
(Answer.)
- Find
d(2s3 + 5t − 2).
- Evaluate d(2xy + 3x2)
at (x, y) = (2, 3).
(Answer.)
- Evaluate d(3xy − 2y2)
at (x, y) = (−1, 2).
- Partial derivatives:
- Readings from my notes: Section 4.5 (pages 36&37).
- Reading from the textbook:
Section 13.3 through "Functions of More than Two Variables"
(pages 714–719).
- Exercises due on September 14 Wednesday
(submit these on Canvas):
- If f is a function of two variables
and the partial derivatives of f
are D1f(x, y) = 2y
and D2f(x, y) = 2x,
then what is the differential of f(x, y)?
(If you're trying to figure out a formula for the function f,
then you're doing too much work!)
- If u is a variable quantity
and the differential of u
is du =
x2 dx +
y3 dy,
then what are the partial derivatives of u
with respect to x and y?
(If you're trying to figure out a formula for the quantity u,
then you're doing too much work!)
- Exercises from the textbook due on September 15 Thursday
(submit these through MyLab):
13.3.1, 13.3.2, 13.3.3, 13.3.9, 13.3.11, 13.3.23,
13.3.25, 13.3.29, 13.3.39, 13.3.63.
- Levels of differentiability:
- Readings from my notes: Sections 3.5&3.6 (page 32).
- Reading from the textbook:
The rest of Section 13.3 (pages 719–723).
- Exercises due on September 20 Tuesday (submit these on Canvas):
For each of the following statements
about functions on R2,
state whether it is always true or sometimes false:
- If a function is continuous, then it is differentiable.
- If a function is differentiable, then it is continuous.
- If a function's partial derivatives (defined as limits) all exist,
then the function is differentiable.
- If a function's partial derivatives (defined as limits)
all exist and are continuous,
then the function is differentiable.
- If a differentiable function's second partial derivatives
(defined as limits of the first partial derivatives)
all exist,
then the mixed partial derivatives are equal.
- If a differentiable function's second partial derivatives
(defined as limits of the first partial derivatives)
all exist and are continuous,
then the mixed partial derivatives are equal.
- Exercises from the textbook due on September 21 Wednesday
(submit these through MyLab):
13.3.43, 13.3.45, 13.3.61, 13.3.85, 13.3.93, 13.3.101.
- Directional derivatives:
- Readings from the textbook:
- Section 13.5 through "Calculation and Gradients"
(pages 736–738);
- Section 13.5 from "Functions of Three Variables"
(pages 742&743).
- Reading from my notes: Sections 4.6&4.7 (pages 37–39).
- Exercises due on September 21 Wednesday
(submit these on Canvas):
Suppose that ∇f(2, 3) = 〈3/5, 4/5〉.
- In which direction u
is the directional derivative Duf(2, 3)
the greatest?
- In which directions u
is the directional derivative Duf(2, 3)
equal to zero?
- In which direction u
is the directional derivative Duf(2, 3)
the least (with a large absolute value but negative)?
- Exercises from the textbook due on September 22 Thursday
(submit these through MyLab):
13.5.1, 13.5.3, 13.5.5, 13.5.7, 13.5.11, 13.5.13,
13.5.15, 13.5.19, 13.5.23.
- Gradient vector fields:
- Readings from the textbook:
- Section 15.2 Figure 15.11 (page 855);
- Section 15.2 "Gradient Fields" (pages 855&856).
- Exercises due on September 22 Thursday
(submit these on Canvas):
- If u = f(x, y),
where f is a differentiable function of two variables,
and du =
2y dx + 2x dy,
then what vector field is the gradient of f?
That is,
∇f(x, y) =
du/d(x, y) = _____.
- If v = g(x, y),
where g is a differentiable function of two variables,
and ∇g(x, y) =
〈x2, y3〉 =
x2i + y3j,
then what are the partial derivatives of g?
That is,
D1g(x, y) =
∂v/∂x = ___,
and D2g(x, y) =
∂v/∂y = ___.
- Exercises from the textbook due on September 23 Friday
(submit these through MyLab):
15.2.1, 15.2.2, 15.2.3, 15.2.4.
- The Chain Rule:
- Reading from the textbook: Section 13.4 (pages 726–733).
- Reading from my notes: Section 4.8 (pages 39&40).
- Exercise due on September 26 Monday (submit this on Canvas):
If u = f(x, y, z)
and v = g(x, y, z),
then what is the matrix
d(u, v)/d(x, y, z)?
(Express the entries of this matrix
using any notation for partial derivatives.)
- Exercises from the textbook due on September 27 Tuesday
(submit these through MyLab):
13.4.1, 13.4.3, 13.4.7, 13.4.9, 13.4.41.
- Tangent flats and normal lines:
- Readings from the textbook:
- Section 13.5 "Gradients and Tangents to Level Curves"
(pages 740&741);
- Section 13.6 "Tangent Planes and Normal Lines"
(pages 744–746).
- Reading from my notes: Section 4.9 (pages 40&41).
- Exercises due on September 27 Tuesday (submit these on Canvas):
Fill in each blank with ‘line’ or ‘plane’.
- If ∇f(a, b) exists but is not zero,
then f
has a tangent ___ and a normal ___ through (a, b).
- If ∇f(a, b, c)
exists but is not zero,
then f
has a tangent ___ and a normal ___
through (a, b, c).
- Exercises from the textbook due on September 28 Wednesday
(submit these through MyLab):
13.5.25, 13.5.27, 13.6.1, 13.6.5, 13.6.11, 13.6.15, 13.6.17.
- Linearization:
- Section 13.6 "How to Linearize a Function of Two Variables"
(pages 747–749).
- Section 13.6 "Functions of More Than Two Variables"
(pages 750&751).
- Reading from my notes: Section 4.10 (pages 41–44).
- Exercises due on September 28 Wednesday
(submit these on Canvas):
Let f be a function of two variables,
and let P0 =
(x0, y0) be
a point at which f is differentiable.
- Write down a formula for
the linear approximation of f near P0;
use the gradient ∇f
or its components D1f and D2f
(in addition to f
and either P0
or its coordinates x0 and y0).
- Suppose
that f
is infinitely differentiable on a region containing P0.
If the linearization of f near P0
is to be a good approximation in this region,
then what order of partial derivatives of f
should be close to zero in that region?
(That is,
should its first partial derivatives be close to zero,
its second partial derivatives, its third partial derivatives,
or what?)
- Exercises from the textbook due on September 29 Thursday
(submit these through MyLab):
13.6.31, 13.6.33, 13.6.35, 13.6.39, 13.6.41.
- Estimation:
- Section 13.6 "Estimating Change in a Specific Direction"
(page 747).
- Section 13.6 "Differentials" (pages 749&750).
- Exercises due on September 29 Thursday
(submit these on Canvas):
- If f is a function of two variables
and f is differentiable at a point
P0 =
(x0, y0),
then about how much does the value of f change at that point
if you move a distance of Δs
in the direction of the vector v?
(Your answer should involve
f or its gradient or partial derivatives,
the distance Δs or ds,
and v or its length or direction.
If you have any other quantity in your answer,
then explain how to get it from these.)
- If (∂u/∂x)y = −3
and (∂u/∂y)x = 2,
then is the quantity u
more or less sensitive
to small changes in x compared to changes in y?
- Exercises from the textbook due on September 30 Friday
(submit these through MyLab):
13.6.21, 13.6.23, 13.6.51, 13.6.55.
- Local optimization:
- Reading from my notes: Section 4.11 (pages 44&45).
- Section 13.7 through "Derivative Tests for Local Extreme Values"
(pages 754–758).
- Exercises due on October 3 Monday (submit these on Canvas):
Consider a function f of two variables
that is infinitely differentiable everywhere.
Identify
whether f
has a local maximum, a local minimum, a saddle, or none of these
at a point (a, b) with these characteristics:
- If the partial derivatives of f at (a, b)
are both nonzero.
- If one of the partial derivatives of f
at (a, b)
is zero
and the other is nonzero.
- If both partial derivatives of f at (a, b)
are zero
and the Hessian determinant of f at (a, b)
is negative.
- If both partial derivatives of f at (a, b)
are zero,
the Hessian determinant of f at (a, b) is positive,
and the unmixed second partial derivatives of f
at (a, b)
are negative.
- If both partial derivatives of f at (a, b)
are zero,
the Hessian determinant of f at (a, b) is positive,
and the unmixed second partial derivatives of f
at (a, b)
are positive.
- Exercises from the textbook due on October 4 Tuesday
(submit these through MyLab):
13.7.2, 13.7.7, 13.7.9, 13.7.15, 13.7.27, 13.7.43.
- Constrained optimization:
- Reading from the textbook:
The rest of Section 13.7 (pages 758–760).
- Exercise due on October 4 Tuesday (submit this on Canvas):
Suppose that you wish
to maximize a continuous function
on the region in 3 dimensions
defined in rectangular coordinates
by 0 ≤ x ≤ 1, 0 ≤ y ≤ 1,
and 0 ≤ z ≤ 1.
How many different constrained regions will you have to check?
(Hint:
One constrained region to check is the 3-dimensional interior,
given by this triple of strict inequalities:
(0 < x < 1, 0 < y < 1,
0 < z < 1).
There are eight constrained regions given entirely by equations,
each of which is a 0-dimensional point:
(x = 0, y = 0, z = 0);
(x = 0, y = 0, z = 1);
(x = 0, y = 1, z = 0);
(x = 0, y = 1, z = 1);
(x = 1, y = 0, z = 0);
(x = 1, y = 0, z = 1);
(x = 1, y = 1, z = 0);
(x = 1, y = 1, z = 1).
You still need to count the constrained regions of intermediate dimension,
each of which will be given
partially by strict inequalities and partially by equations.
Be sure to give the final total
including the 9 that I've mentioned in this hint.
A picture may help.)
- Exercises from the textbook due on October 5 Wednesday
(submit these through MyLab):
13.7.31, 13.7.33, 13.7.37, 13.7.51, 13.7.59.
- Lagrange multipliers:
- Reading from the textbook: Section 13.8 (pages 763–770).
- Exercises due on October 5 Wednesday (submit these on Canvas):
For simplicity,
assume that all of the functions that appear in the following exercises
are differentiable everywhere and never have a zero gradient.
- If you wish to use Lagrange multipliers
to maximize f(x, y)
subject to the constraint that g(x, y) = 0,
then what system of equations do you need to solve?
- If you wish to use Lagrange multipliers
to maximize f(x, y, z)
subject to the constraint
that g(x, y, z) = 0,
then what system of equations do you need to solve?
- If you wish to use Lagrange multipliers
to maximize f(x, y, z)
subject to the constraint
that g(x, y, z) = 0
and h(x, y, z) = 0,
then what system of equations do you need to solve?
(For simplicity,
assume that the gradients of g and h
are never parallel or antiparallel.)
- Exercises from the textbook due on October 6 Thursday
(submit these through MyLab):
13.8.1, 13.8.3, 13.8.9, 13.8.11, 13.8.15, 13.8.23.
Quiz 2, covering the material in Problem Sets 13–18 and 20–25,
is available on October 14 Friday.
Integration
- Integration on curves:
- Reading from my notes:
Chapter 5 through Section 5.2 (pages 47&48).
- Reading from the textbook:
Section 15.2
"Line Integrals with Respect to dx, dy, or dz"
(pages 857&858).
- Exercises due on October 6 Thursday (submit these on Canvas):
- To integrate
a differential form
M(x, y) dx +
N(x, y) dy
along a parametrized curve
(x, y) =
(f(t), g(t))
for a ≤ t ≤ b,
oriented in the direction of increasing t,
what integral in the variable t do you evaluate?
- To integrate the differential form x3 dy
clockwise around the unit circle circle,
parametrized (as usual)
by (x, y) =
(cos t, sin t)
for 0 ≤ t ≤ 2π
(using a counterclockwise coordinate system as usual),
what are the bounds on the integral in the parameter t?
That is,
is it
∫02π cos4 t dt
or
∫2π0 cos4 t dt?
- Exercises from the textbook due on October 7 Friday
(submit these through MyLab):
15.2.13, 15.2.15, 15.2.17, 15.2.23.
- Integrating vector fields:
- Reading from my notes:
- Section 5.3 (page 48);
- Section 5.5 (page 49).
- Reading from the textbook:
The rest of Section 15.2 (pages 856&857, 859–863).
- Exercises due on October 10 Monday (submit these on Canvas):
- To integrate
the vector field
F(x, y, z) =
〈2x, −3x, 4xy〉 =
2xi −
3xj + 4xyk
along a curve in (x, y, z)-space,
what differential form do you integrate along the curve?
- To integrate
the vector field
F(x, y) =
〈x2, 3〉 =
x2i +3j
across a curve in the (x, y)-plane,
what differential form do you integrate along the curve?
- To integrate inwards across a circle,
should the circle be oriented clockwise or counterclockwise
(using a counterclockwise coordinate system as usual)?
- Exercises from the textbook due on October 11 Tuesday
(submit these through MyLab):
15.2.9, 15.2.11, 15.2.19, 15.2.21, 15.2.29, 15.2.33.
- Integrating scalar fields:
- Reading from my notes: Section 5.4 (page 49).
- Reading from the textbook:
Section 15.1 except for "Mass and Moment Calculations"
(pages 847–850, pages 851&852).
- Exercises due on October 11 Tuesday (submit these on Canvas):
- To integrate
the scalar field
f(x, y, z) =
2x − 4xy
on a curve in (x, y, z)-space,
what (nonlinear) differential form do you integrate along the curve?
- To integrate a scalar field f
on the unit circle,
parametrized (clockwise)
by (x, y) =
(sin t, cos t)
for 0 ≤ t ≤ 2π,
what should be the bounds on your integral in the variable t?
(That is,
is it
∫02π f(sin t, cos t) dt
or
∫2π0 f(sin t, cos t) dt?)
- Exercises from the textbook due on October 12 Wednesday
(submit these through MyLab):
15.1.9, 15.1.13, 15.1.15, 15.1.21, 15.1.30.
- Double integrals on rectangles:
- Reading from the textbook:
Chapter 14 through Section 14.1 (pages 779–783).
- Exercises due on October 12 Wednesday (submit these on Canvas):
- Rewrite
∫ba ∫dc f(x, y) dy dx
as an iterated integral ending with dx dy.
- Assuming that f is continuous everywhere,
is it possible that these two iterated integrals
could evaluate to different results?
- Exercises from the textbook due on October 13 Thursday
(submit these through MyLab):
14.1.3, 14.1.6, 14.1.10, 14.1.19, 14.1.23.
- Double integrals:
- Reading from the textbook: Section 14.2 (pages 784–790).
- Reading from my notes:
Chapter 6 through Section 6.2 (pages 53&54).
- Exercises due on October 20 Thursday (submit these on Canvas):
- Suppose
that a and b are real numbers with a ≤ b
and g and h are functions,
both continuous on [a, b],
with g ≤ h on [a, b].
Let R
be the region
{x, y |
a ≤ x ≤ b,
g(x) ≤ y ≤ h(x)},
and suppose
that f is a function of two variables, continuous on R.
Write
an iterated integral
equal to the double integral of f on R.
- Suppose
that c and d are real numbers with c ≤ d
and g and h are functions,
both continuous on [c, d],
with g ≤ h on [c, d].
Let R
be the region
{x, y |
g(y) ≤ x ≤ h(y),
c ≤ y ≤ d},
and suppose
that f is a function of two variables, continuous on R.
Write
an iterated integral
equal to the double integral of f on R.
- Exercises from the textbook due on October 21 Friday
(submit these through MyLab):
14.2.1, 14.2.2, 14.2.7, 14.2.19, 14.2.23, 14.2.79.
- Systems of inequalities:
- Reading from my notes: Section 6.3 (pages 55–57).
- Exercises due on October 24 Monday (submit these on Canvas):
Suppose
that you wish to integrate a function f of two variables
on the region
R =
{x, y |
x2 ≤ y ≤ 2x}.
- Given only x2 ≤ y ≤ 2x,
what equation (or inequality) would you solve
to find that you also have 0 ≤ x ≤ 2?
- Now that you have
both x2 ≤ y ≤ 2x
and 0 ≤ x ≤ 2,
what iterated integral do you evaluate?
- Exercises from the textbook due on October 25 Tuesday
(submit these through MyLab):
14.2.9, 14.2.11, 14.2.13, 14.2.17, 14.2.35,
14.2.41, 14.2.49, 14.2.51.
- Triple integrals:
- Reading from the textbook:
Section 14.5 except
"Volume of a Region in Space" and "Average value of a function in space"
(pages 803, 804–810, 810).
- Exercise due on October 25 Tuesday (submit this on Canvas):
In how many ways can you order 3 variables of integration? List them.
- Exercises from the textbook due on October 26 Wednesday
(submit these through MyLab):
14.5.10, 14.5.15, 14.5.3, 14.5.5, 14.5.21.
- Areas, volumes, and averages:
- Readings from the textbook:
- Section 14.3 (pages 793–795);
- Section 14.5 "Volume of a Region in Space" (pages 803&804);
- Section 14.5 "Average value of a function in space"
(page 810).
- Exercises due on October 26 Wednesday (submit these on Canvas):
Suppose
that a, b, c, and d
are four real numbers
with a ≤ b and c ≤ d,
that f
is a continuous function of two variables
whose domain is the rectangle
{x, y |
a ≤ x ≤ b,
c ≤ y ≤ d},
and that f(x, y) ≥ 0
whenever a ≤ x ≤ b
and c ≤ y ≤ d.
Write down expressions
(in terms of a, b, c, d, and f)
for the volume under the graph of f:
- Using ideas from §14.2 of the textbook,
as an iterated double integral in the variables x and y;
- Using ideas from §14.5 of the textbook,
as an iterated triple integral
in the variables x, y, and z.
(If you want to check your answers somewhat:
You shouldn't be able to evaluate your answer to #1,
because I haven't told you which function f is;
however, you should be able to begin evaluating your answer to #2
if you write the variables in an appropriate order,
and this should turn it into your answer from #1,
after which you shouldn't be able to go any further.)
- Exercises from the textbook due on October 27 Thursday
(submit these through MyLab):
14.3.1, 14.3.3, 14.3.5, 14.3.11, 14.3.20, 14.3.21, 14.2.57,
14.2.63, 14.5.25, 14.5.29, 14.5.33, 14.5.37.
- The area element:
- Reading from my notes: Sections 6.4&6.5 (pages 57–60).
- Exercises due on October 27 Thursday (submit these on Canvas):
Write all answers explicitly in terms of scalars and operations on scalars;
don't leave the final answer
as a dot product, cross product, or wedge product.
- Let P, Q, and R
be three points in R2;
write 〈a, b〉
for the vector Q − P,
and write 〈c, d〉
for the vector R − P.
Express the area of the triangle with vertices P, Q, and R
using only a, b, c, and d.
- In the (x, y)-plane,
evaluate the differential form |dx ∧ dy|
along the vectors
〈a, b〉
and 〈c, d〉.
- Exercises not from the textbook due on October 28 Friday
(submit these on Canvas too):
- Evaluate dx ∧ dy
along d(x, y) =
〈−2, 3〉, 〈4, 6〉.
(Answer.)
- Evaluate dx ∧ dy
along d(x, y) =
〈4, −9〉, 〈6, 3〉.
- Find the area of a triangle
if two of the vectors along its sides
are 〈−2, 3〉 and 〈4, 6〉.
(Answer.)
- Find the area of a triangle
if two of the vectors along its sides
are 〈4, −9〉
and 〈6, 3〉.
- Coordinate transformations:
- Reading from my notes: Section 6.6 (pages 60&61).
- Reading from the textbook: Section 14.8 (pages 832–839).
- Exercise due on October 31 Monday (submit this on Canvas):
If x = f(u, v)
and y = g(u, v),
where f and g are continuously differentiable everywhere,
then write the area element dx dy
(which is more properly written |dx ∧ dy|)
in terms of u, v, their differentials,
and the partial derivatives of f and g
(which you can also think of
as the partial derivatives of x and y
with respect to u and v).
(There are formulas in both my notes and the textbook that you can use,
or you can work it out from first principles
using the more proper expression involving dx and dy given above.
You may use any correct formula,
as long as it explicitly uses partial derivatives as directed,
rather than some more sophisticated notation instead.)
- Exercises from the textbook due on November 1 Tuesday
(submit these through MyLab):
14.8.1, 14.8.3, 14.8.7, 14.8.9, 14.8.17, 14.8.22.
- Polar coordinates:
- Reading from my notes: Sections 2.5&2.6 (pages 24–26).
- Exercises due on November 1 Tuesday (submit these on Canvas):
Use the U.S. mathematicians' conventions for polar coordinates.
- Express the rectangular coordinates x and y
in terms of the polar coordinates r and θ.
- Express the cyclindrical coordinates z and r
in terms of the spherical coordinates ρ and φ.
- Combining these,
express the rectangular coordinates x, y, and z
in terms of the spherical coordinates
ρ, φ, and θ.
- Exercises from the textbook due on November 2 Wednesday
(submit these through MyLab):
14.4.1, 14.4.2, 14.4.5, 14.4.7, 14.7.1, 14.7.3, 14.7.13.
- Area integrals in polar coordinates:
- Reading from my notes: Section 6.7 (pages 62&63).
- Reading from the textbook: Section 14.4 (pages 796–801).
- Exercises due on November 2 Wednesday (submit these on Canvas):
- Give a formula for the area element in the plane
in rectangular coordinates x and y.
- Give a formula for the area element in the plane
in polar coordinates r and θ.
- Exercises from the textbook due on November 3 Thursday
(submit these through MyLab):
14.4.9, 14.4.17, 14.4.20, 14.4.23, 14.4.25,
14.4.27, 14.4.29, 14.4.33, 14.4.37.
- Volume integrals in polar coordinates:
- Reading from the textbook: Section 14.7 (pages 820–828).
- Exercises due on November 3 Thursday (submit these on Canvas):
- Give a formula for the volume element in space
in rectangular coordinates x, y, and z.
- Give a formula for the volume element in space
in cylindrical coordinates r, θ, and z.
- Give a formula for the volume element in space
in spherical coordinates ρ, φ, and θ
(using the American mathematicians' convention
for which of these is which).
- Exercises from the textbook due on November 4 Friday
(submit these through MyLab):
14.7.23, 14.7.25, 14.7.29, 14.7.33, 14.7.35, 14.7.45, 14.7.60,
14.7.61, 14.7.63, 14.7.71, 14.7.85, 14.7.87.
Quiz 3, covering the material in Problem Sets 26–33 and 35–38,
is available on November 11 Friday.
Surfaces
- Parametrized surfaces:
- Readings from the textbook:
- Section 11.6 (pages 651–655);
- Section 15.5 through "Parametrizations of Surfaces
(pages 890&891).
- Reading from my notes: Chapter 7 through Section 7.1 (page 65).
- Exercises due on November 7 Monday (submit these on Canvas):
- Write down
a parametrization
of the sphere
x2 + y2 +
z2 =
1
using the spherical coordinates φ and θ
(using the U.S. mathematicians' convention for which of these is which).
- Write down
a parametrization
of the portion
of the cone
x2 + y2 = z2
where 0 ≤ z ≤ 1
using cylindrical coordinates
(either z and θ
or r and θ).
- Exercises from the textbook due on November 8 Tuesday
(submit these through MyLab):
15.5.1, 15.5.3, 15.5.5, 15.5.9, 15.5.13.
- Integrals along surfaces:
- Reading from my notes: Sections 7.2–7.4 (pages 66–68).
- Exercise due on November 8 Tuesday (submit this on Canvas):
If x = f(u, v),
y = g(u, v),
and z = h(u, v),
where f, g, and h are differentiable functions,
express each
of dy ∧ dz, dz ∧ dx,
and dx ∧ dy
using partial derivatives and du ∧ dv.
- Exercises not from the textbook due on November 9 Wednesday
(submit these on Canvas too):
- Find the integral
of x dx ∧ dy +
y dy ∧ dz
on the triangle in (x, y, z)-space
with vertices (0, 0, 1),
(0, 1, 0), and (1, 0, 0),
oriented clockwise when viewed from the origin
(in a right-handed coordinate system).
(Answer.)
- Find the integral
of x dx ∧ dy −
y dy ∧ dz
on the triangle in (x, y, z)-space
with vertices (0, 0, 1),
(0, 1, 0), and (1, 0, 0),
oriented clockwise when viewed from the origin
(in a right-handed coordinate system).
- Find the integral of dy ∧ dz
on the portion of the unit sphere in the first octant,
oriented clockwise when viewed from the origin
(in a right-handed coordinate system).
(Answer.)
- Find the integral of dx ∧ dy
on the portion of the unit sphere in the first octant,
oriented clockwise when viewed from the origin
(in a right-handed coordinate system).
- Flux across surfaces:
- Reading from the textbook:
- Section 15.6 introduction (page 900);
- Section 15.6
from "Orientation of a Surface"
to "Computing a Surface Integral for a Level Surface"
(pages 904–906).
- Reading from my notes: Section 7.5 (pages 68&69).
- Exercises due on November 9 Wednesday (submit these on Canvas):
- If you
parametrize a closed surface containing the origin
using the spherical coordinates φ and θ
(using the U.S. mathematicians' convention for which of these is which)
and orient (by which I technically mean pseudoorient) this surface outwards,
then (using the right-hand rule in a right-handed coordinate system
to interpret this as an honest orientation)
does this orientation
correspond
to increasing φ followed by increasing θ
(that is dφ ∧ dθ)
or to increasing θ followed by increasing φ
(that is dθ ∧ dφ)?
- Write down
a formula
for the pseudooriented surface element
dS = n dσ
on a parametrized surface
in terms of the coordinates (x, y, z)
and/or the parameters (u, v)
and their differentials and/or partial derivatives.
(There are multiple correct answers to this
throughout the readings from the textbook and my notes.)
- Exercises from the textbook due on November 10 Thursday
(submit these through MyLab):
15.6.19, 15.6.23, 15.6.25, 15.6.33, 15.6.35, 15.6.37, 15.6.41.
- Integrals on surfaces:
- Reading from my notes: Section 7.6 (pages 69&70).
- Readings from the textbook:
- The rest of Section 15.5 (pages 891–898);
- Section 15.6 "Surface Integrals" (pages 900–903).
- Exercises due on November 15 Tuesday (submit these on Canvas):
- Write down
a formula
for the surface area element dσ = |dS|
on a parametrized surface
in terms of the coordinates (x, y, z)
and/or the parameters (u, v)
and their differentials and/or partial derivatives.
(There are multiple correct answers to this
throughout the readings from the textbook and my notes.)
- If f
is a continuous function of two variables with a compact domain R,
write down a double integral for the surface area of the graph of f,
using f and its partial derivatives.
- Exercises from the textbook due on November 16 Wednesday
(submit these through MyLab):
15.5.19, 15.5.21, 15.6.1, 15.6.5, 15.6.7, 15.6.11, 15.6.15.
- Moments:
- Reading from the textbook:
- Section 14.6 (page 813–818);
- Section 15.1 "Mass and Moment Calculations" (pages 850&851);
- Section 15.6 "Moments and Masses of Thin Shells"
(pages 906–908).
- Exercises due on November 16 Wednesday
(submit these on Canvas):
- Give
the formulas
for the centre of mass
(x̄, ȳ, z̄)
of a three-dimensional solid
in terms of the total mass M
and the moments
Mx,y, Mx,z,
and My,z.
- Give
a formula
for the polar moment of inertia I0 of a two-dimensional plate
in terms of the moments of inertia
Ix and Iy
about the coordinate axes.
- Exercises from the textbook due on November 17 Thursday
(submit these through MyLab):
14.6.3, 14.6.13, 14.6.19, 14.6.25, 14.7.99, 15.1.35, 15.6.45.
- Conservative vector fields and exact differential forms:
- Reading from my notes: Section 5.6 (pages 50&51).
- Reading from the textbook: Section 15.3 (pages 867–876).
- Exercises due on November 17 Thursday (submit these on Canvas):
True or false:
- If f is a differentiable scalar field,
then its gradient, the vector field ∇f, must be conservative.
- If u is a differentiable scalar quantity,
then its differential, the differential form du, must be exact.
- If F is a conservative vector field in two dimensions,
then the differential form
F(x, y) ⋅ d(x, y)
must be exact.
- If F is a vector field in two dimensions
and the differential form
F(x, y) ⋅ d(x, y)
is exact,
then F must be conservative.
- Exercises from the textbook due on November 18 Friday
(submit these through MyLab):
15.3.1, 15.3.3, 15.3.5, 15.3.7, 15.3.8, 15.3.11,
15.3.13, 15.3.17, 15.3.21.
- Exterior differentials:
- Reading from my notes:
Chapter 8 through Section 8.1 (pages 71–73).
- Exercises due on November 21 Monday (submit these on Canvas):
Write down
the exterior differentials of the following exterior differential forms:
- x,
- dx,
- x dy,
- x dy + y dz,
- x dy ∧ dz.
- Exercises not from the textbook due on November 22 Tuesday
(submit these on Canvas too):
Find
the exterior differential (aka exterior derivative)
of each of the following exterior differential forms:
- 2x dx + 3y dx +
4x dy + 5y dy.
(Answer.)
- 3x dx + 2y dx −
5x dy − 4y dy.
- 2xy dx +
3yz dy + 4xz dz.
(Answer.)
- 4xz dx +
3xy dy +
2yz dz.
- 2x dx ∧ dy +
3y dx ∧ dz +
4z dy ∧ dz.
(Answer.)
- 2z dx ∧ dy +
3y dx ∧ dz +
4x dy ∧ dz.
- Green's Theorem:
- Reading from my notes: Section 8.3 (pages 74&75).
- Reading from the textbook: Section 15.4 (pages 878–887).
- Exercise due on November 22 Tuesday (submit this on Canvas):
Write down
as many different versions of the general statement of Green's Theorem
as you can think of.
(There are some in both the textbook and my notes.
I'll give full credit for at least two
that are different beyond a trivial change in notation,
but there are really more than that.)
- Exercises from the textbook due on November 28 Monday
(submit these through MyLab):
15.4.7, 15.4.9, 15.4.13, 15.4.15, 15.4.17,
15.4.21, 15.4.27, 15.4.29, 15.4.32.
- Stokes's Theorem:
- Reading from my notes: Section 8.4 (page 76).
- Reading from the textbook: Section 15.7 (pages 910–921).
- Exercises due on November 28 Monday (submit these on Canvas):
In 3-dimensional space,
let S be a surface bounded by a closed curve C.
- If F
is a differentiable vector field defined on (at least) S,
then the integral of F along C
equals the integral of the _____ of F across S,
if the orientations are appropriately matched.
- If the z-axis passes through S,
you orient (or really pseudo-orient) S
so that z is increasing along the z-axis through the surface,
and you orient C so that Stokes's Theorem holds,
then is the cylindrical coordinate θ
increasing or decreasing overall along C?
- Exercises from the textbook due on November 29 Tuesday
(submit these through MyLab):
15.7.7, 15.7.9, 15.7.11, 15.7.13, 15.7.15,
15.7.19, 15.7.23, 15.7.33.
- Gauss's Theorem:
- Reading from my notes: Section 8.5 (page 77).
- Reading from the textbook: Section 15.8 (pages 923–931).
- Exercises due on November 29 Tuesday (submit these on Canvas):
In 3-dimensional space,
let D be a region bounded by a closed surface S.
- If F
is a differentiable vector field defined on (at least) D,
then the integral of F across S
equals the integral of the _____ of F on D,
if the orientation is appropriate.
- If the origin lies within D
and you orient (or really pseudo-orient) S
so that Gauss's Theorem holds,
then is the spherical coordinate ρ
increasing or decreasing overall through S?
- Exercises from the textbook due on November 30 Wednesday
(submit these through MyLab):
15.8.5, 15.8.6, 15.8.9, 15.8.11, 15.8.13, 15.8.17, 15.8.22.
- Cohomology:
- Reading from my notes: Section 8.2 (page 73).
- Exercises due on November 30 Wednesday
(submit these on Canvas):
- Fill in the blank:
If α is an exterior differential form,
then d ∧ d ∧ α
(the exterior differential of the exterior differential of α)
is ___.
(Assume
that α is at least twice differentiable
so that this second-order differential exists.)
- Given
f(x, y, z) =
2x3y2 cos esin z,
what is ∇ × ∇f,
the curl of the gradient of f?
(Hint:
If you're doing a bunch of calculations,
then you're making this too hard.)
- Given
F(x, y, z) =
〈2x3y2, cos esin z, sin ecos z〉 =
2x3y2i +
cos esin z j +
sin ecos z k,
what is ∇ ⋅ ∇ × F,
the divergence of the curl of F?
(Hint:
If you're doing a bunch of calculations,
then you're making this too hard.)
- Exercises from the textbook due on December 1 Thursday
(submit these through MyLab):
15.3.25, 15.4.45, 15.7.27, 15.8.23.
Quiz 4, covering the material in Problem Sets 39, 41–44, and 45–49,
is available on December 2 Friday.
Quizzes
- Curves and functions:
- Date available: September 16 Friday.
- Date due:
September 19 Monday (before 1:00 PM CDT).
- Corresponding problems sets: 1–11.
- Help allowed: Your notes, calculator.
- NOT allowed: Textbook, my notes, other people, websites, etc.
- Work to show:
Submit a picture of your work on Canvas,
at least one intermediate step
for each result except #3 & #6.
- Differentiation:
- Date available: October 14 Friday.
- Date due:
October 19 Wednesday (before 1:00 PM CDT).
- Corresponding problems sets: 12–23.
- Help allowed: Your notes, calculator.
- NOT allowed: Textbook, my notes, other people, websites, etc.
- Work to show:
Submit a picture of your work on Canvas,
at least one intermediate step for each result.
- Integration:
- Date available: November 11 Friday.
- Date due:
November 14 Monday (before 1:00 PM CDT).
- Corresponding problems sets: 24–36.
- Help allowed: Your notes, calculator.
- NOT allowed: Textbook, my notes, other people, websites, etc.
- Work to show:
Submit a picture of your work on Canvas,
at least one intermediate step for each result except #5.
- More integration:
- Date available: December 2 Friday
- Date due:
December 5 Monday (before 1:00 PM CDT).
- Corresponding problems sets: 37–47.
- Help allowed: Your notes, calculator.
- NOT allowed: Textbook, my notes, other people, websites, etc.
- Work to show:
Submit a picture of your work on Canvas,
at least one intermediate step for each result.
Final exam
There is a comprehensive final exam at the end of the term.
(You'll arrange to take it some time December 12–16.)
To speed up grading at the end of the term,
the exam will be multiple choice, with no partial credit.
For the exam, you may use one sheet of notes that you wrote yourself;
please take a scan or a picture of this (both sides)
and submit it on Canvas.
However, you may not use your book or anything else not written by you.
You certainly should not talk to other people!
Calculators are allowed, although you shouldn't really need one,
but not communication devices (like cell phones).
The exam consists of questions
similar in style and content to those in the practice exam on MyLab.
The final exam will be proctored.
If you have access to a computer with a webcam,
then you can schedule a time with me to take the exam in a Zoom meeting.
If you're near Lincoln,
then we can schedule a time for you to take the exam in person.
If you're near any of the three main SCC campuses
(Lincoln, Beatrice, Milford)
and available on a weekday,
then you can schedule the exam at one of the Testing Centers.
If none of these will work for you,
then contact me as soon as possible to make alternate arrangements.
This web page and the files linked from it (except for the official syllabus)
were written by Toby Bartels, last edited on 2023 January 7.
Toby reserves no legal rights to them.
The permanent URI of this web page
is
https://tobybartels.name/MATH-2080/2022FA/
.