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Wel
ome to multivariable Cal
ulus! Here are my supplemental notes for this 
ourse, giving alternative

ways to think about some things, pra
ti
al advi
e, and sometimes more theoreti
al detail.

This does not 
over everything that you need to know; you should also have the o�
ial 
ourse text-

book, whi
h is the 4th Edition of University Cal
ulus: Early Trans
endentals by Hass et al published by

Addison�Wesley (Pearson). There are also some referen
es in these notes to that textbook. Conversely,

there is some material in here that you don

′
t need to know, although I hope that it will be helpful; I ll

generally make a note of that when it happens.
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1 Ve
tor algebra

The �rst part of this 
ourse involves working with points and ve
tors in multidimensional spa
e. There are

not really any new ideas of Cal
ulus itself here, but the setting may be new.

1.1 Points

In this 
lass, we look at spa
es with up to 3 dimensions, but most of the ideas in this 
ourse 
ontinue to

make sense in spa
es with any whole number of dimensions. Although spa
es with more than 3 dimen-

sions are di�
ult to visualize, sin
e we re used to living in a 3-dimensional spa
e, they make perfe
t sense

mathemati
ally. Furthermore, whenever you re trying to keep tra
k of 4 or more independent quantities at

on
e, then you need the mathemati
s of a spa
e with 4 or more dimensions, whether or not you 
hoose to

visualize that spa
e geometri
ally.

If we assign re
tangular 
oordinates to a spa
e of n dimensions, then the result is 
alled Rn
(or R

n
);

in parti
ular, a 
oordinate spa
e of 1 dimension is R1
or simply R, whi
h is the set of real numbers, or

(thinking geometri
ally) the real number line. You 
an 
all the 
oordinates whatever you like, but it s

most 
ommon to use x (or sometimes t) as the 
oordinate in R; then to use x and y as the 
oordinates in

R2
; then x, y, and z in R3

; and �nally x1, x2, . . . , and xn in Rn
generally. But there are other systems;

as long as you list n independent variables in a row, then you have a valid list of 
oordinates for Rn
.

A point in Rn
may be denoted by listing the values of its 
oordinates in order, separated by 
ommas

and optionally surrounded by grouping parentheses. Thus, (x) or (more 
ommonly) x gives a point in the

real line R, while (x, y) gives a point in the 
oordinate plane R2
, (x, y, z) gives a point in the 
oordinate

spa
e R3
, and (x1, x2, . . . , xn) gives a point in Rn

(whi
h is the most general 
ase).

Sometimes it s ni
e to have a way to refer to a point in any number of dimensions without having to

write a long list with dots in it; then I usually write P for the point. Thus, in 1 dimension, P = x; in 2 di-

mensions, P = (x, y); in 3 dimensions, P = (x, y, z); and in n dimensions, P = (x1, x2, . . . , xn). So for ex-

ample, if I say that P = (2, 3, 5), then this is the same as saying that x = 2, y = 3, and z = 5.
It s traditional to use upper
ase letters to name points, as I just did. Another tradition is to leave

out the equality sign when naming points; so instead of writing P = (2, 3, 5) as I did above, people often

just write P (2, 3, 5). I think that this is a terrible 
onvention, so I won t follow it, but you will see it some-

times, even in the textbook.

1.2 Ve
tors

A ve
tor is a movement between points. For example, to move in the plane from the point (2, 3) to the

point (3, 1), you move 1 unit to the right (in the positive x dire
tion) and 2 units downwards (in the nega-

tive y dire
tion). This movement (1 unit to the right and 2 units downwards) is a ve
tor.

A ve
tor in Rn
has the same amount of information as a point there: n real numbers. For this reason,

people sometimes write a ve
tor using the same notation as they use to write a point. For example, the

ve
tor from the previous paragraph 
ould be written as (1,−2), the same notation as used for the point

(1,−2). When referring to a ve
tor, (1,−2) means a movement 1 unit to the right and 2 units downards;

when referring to a point, (1,−2) means the point that lies 1 unit to the right and 2 units downwards from

the origin.

However, a ve
tor is not the same thing as a point, and so people often use di�erent notation instead.

Common notations for the ve
tor that I ve been talking about in
lude [1,−2],
î

1
−2

ó
, and 〈1,−2〉. I will use

the last of these, sin
e that is used in the textbook. (There is another notation, whi
h the book uses even

more often than 〈1,−2〉, and that is i− 2j. However, I ll save that for Se
tion 1.4, starting on page 6 be-

low.) The terminology for these numbers is also di�erent; while 1 and −2 are the 
oordinates of the point

(1,−2), we say that 1 and −2 are the 
omponents of the ve
tor 〈1,−2〉.
Whereas a point tells you a lo
ation, a ve
tor tells you only about the motion and nothing about the

lo
ation. So the ve
tor from (2, 3) to (3, 1) is the same ve
tor as, say, the ve
tor from (−2, 7) to (−1, 5).
In both 
ases, the motion is 1 unit to the right and 2 units downwards, so the ve
tor is 〈1,−2〉.
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Motion on a number line 
orresponds arithmeti
ally to addition. For example, if you start at the

number 2 on a number line and move 4 units to the right, then you end up at the number 6, and we rep-

resent this fa
t in arithmeti
 as 2 + 4 = 6. Similarly, if you start at (2, 3) and move a

ording to the ve
-

tor 〈1,−2〉, then you end up at (3, 1), and we represent this fa
t in arithmeti
 as (2, 3) + 〈1,−2〉 = (3, 1).
So you 
an add a point and a ve
tor to get another point. Or from another perspe
tive, we 
ould write

6− 2 = 4, and similarly (3, 1)− (2, 3) = 〈1,−2〉. So one way to des
ribe a ve
tor is to say that it s what

you get when you subtra
t two points. The textbook doesn t talk about arithmeti
 with points and ve
-

tors like this; it does talk about 
al
ulating the ve
tor from one point to another or 
al
ulating the point

rea
hed from another point by following a given ve
tor, but it doesn t refer to these operations as subtra
-

tion and addition. Nonetheless, that s exa
tly what they are.

The rules for these 
al
ulations are very straightforward: you add or subtra
t 
orresponding 
oordi-

nates and 
omponents. That is, to get the �rst 
oordinate of the sum, you add the �rst 
oordinate of the

original point and the �rst 
omponent of the ve
tor, and similarly for the se
ond 
oordinate; or when you

subtra
t two points, you subtra
t the �rst 
oordinates of the two points to get the �rst 
omponent of the

di�eren
e, and similarly for the se
ond 
omponent. So you 
an write out the 
al
ulations in full thus:

(2, 3) + 〈1,−2〉 = (2 + 1, 3− 2) = (3, 1);

(3, 1)− (2, 3) = 〈3− 2, 1− 3〉 = 〈1,−2〉.

Here are general formulas for this rule in any number of dimensions:

(a1, a2, . . . , an) + 〈v1, v2, . . . , vn〉 = (a1 + v1, a2 + v2, . . . , an + vn);

(b1, b2, . . . , bn)− (a1, a2, . . . , an) = 〈b1 − a1, b2 − a2, . . . , bn − an〉.

When I use P to denote a generi
 point, I ll use ∆P to denote a generi
 ve
tor. Here, the upper
ase

Greek letter Delta, `∆', whi
h stands for `di�eren
e', is 
ommonly used to indi
ate the amount by whi
h

the value of some quantity 
hanges. (Think of ∆y/∆x for the slope of a line.) That is,

∆P = P1 − P0,

or

∆P = 〈∆x1,∆x2, . . . ,∆xn〉.

When people want a symbol for the ve
tor from P to Q but don t want to refer to subtra
tion of points,

then they ll sometimes write

−−→
PQ for Q− P , but I won t do that.

When you give a ve
tor a name of its own, however, it s 
ommon to use a boldfa
e lower
ase letter,

su
h as u or v. Thus, if I use v to refer to the ve
tor that I ve been using as an example throughout this

se
tion, then I would write v = 〈1,−2〉. In handwriting, you 
an write a little arrow over the letter in-

stead, to produ
e something like ~v; other 
ommon 
onventions are to underline or overline ve
tors, produ
-

ing symbols su
h as v or v. On the other hand, it s OK to just write v if you want. The meaning of any

symbol that you use should be 
lear from the 
ontext that you provide; in parti
ular, the 
ontext should

make 
lear whether a symbol refers to a number, fun
tion, point, ve
tor, or whatever, regardless of what-

ever fan
y fonts or de
orations you may or may not use.

1.3 Arithmeti
 with ve
tors

Besides adding ve
tors to points and subtra
ting points to get a ve
tor, you 
an also do arithmeti
 within

the world of ve
tors itself. If u and v are ve
tors in n dimensions, both representing some motion with-

in Rn
, then u+ v represents the motion of u followed by the motion of v. This is 
onsistent with how

addition of motions works on a number line; for example, if you move 4 units to the right and then move

3 units to the right, then overall you re moving 4 + 3 = 7 units to the right.

If v is a ve
tor, then −v is the ve
tor representing the opposite motion. Again, this mat
hes arith-

meti
 on a number line; the opposite of moving 4 units to the right is moving 4 units to the left, whi
h is

represented by the number −4. Then u− v just means u+ (−v).
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You 
al
ulate these by the same prin
iples as arithmeti
 between points and ve
tors. For example, to

add 〈1,−2〉 and 〈3, 5〉, you simply add the 
orresponding 
omponents:

〈1,−2〉+ 〈3, 5〉 = 〈1 + 3,−2 + 5〉 = 〈4, 3〉.

And this should make sense; if you move 1 unit to the right and 2 units downwards, then move 3 units to

the right and 5 units upwards, then overall you re moving 4 units to the right and 3 units upwards. Simi-

larly,

〈1,−2〉 − 〈3, 5〉 = 〈1− 3,−2− 5〉 = 〈−2,−7〉.

That is, if you move 1 unit to the right and 2 units downards and then move the opposite of 3 units to the

right and 5 units upwards (whi
h is 3 units to the left and 5 units downwards), then overall you re moving

2 units to the left and 7 units downwards. Here are the general formulas in Rn
:

〈u1, u2, . . . , un〉+ 〈v1, v2, . . . , vn〉 = 〈u1 + v1, u2 + v2, . . . , un + vn〉;
〈u1, u2, . . . , un〉 − 〈v1, v2, . . . , vn〉 = 〈u1 − v1, u2 − v2, . . . , un − vn〉.

Besides adding and subtra
ting ve
tors, you 
an multiply or divide them by real numbers. For exam-

ple, if v is a ve
tor representing some motion, then 2v represents doing that motion twi
e, 1/2v or v/2
represents performing half of that motion, −2v represents making the opposite motion twi
e, and so on.

You 
al
ulate these by multiplying ea
h 
omponent by that same real number; for example,

2〈1,−2〉 = 〈2(1), 2(−2)〉 = 〈2,−4〉,
1

2
〈1,−2〉 =

≠
1

2
(1),

1

2
(−2)

∑
=

≠
1

2
,−1

∑
or

〈1,−2〉
2

=

≠
1

2
,
−2

2

∑
=

≠
1

2
,−1

∑
, and

−2〈1,−2〉 = 〈−2(1),−2(−2)〉 = 〈−2, 4〉.

Here are the general formulas in Rn
:

a〈v1, v2, . . . , vn〉 = 〈av1, av2, . . . , avn〉;
〈v1, v2, . . . , vn〉

a
=

≠
v1
a
,
v2
a
, . . . ,

vn
a

∑
for a 6= 0.

This operation is 
alled s
alar multipli
ation (or s
alar division in the 
ase of v/a), be
ause geometri-


ally it amounts to 
hanging the s
ale used to measure the ve
tor (at least when the real number in ques-

tion is positive). As a result of this, numbers are often 
alled s
alars when working with ve
tors, even

though the word `number' would work perfe
tly well.

More generally, you 
an take any homogeneous linear expression (that is a linear expression without

a 
onstant term) in any number of variables, repla
e the variables with ve
tors, and get a legitimate oper-

ation on ve
tors. Su
h an operation is 
alled, in general, a linear 
ombination. For example, 2u+ 3v−
5w is a linear 
ombination of the ve
tors u, v, and w. Geometri
ally, this represents moving twi
e a

ord-

ing to u, then moving 3 times a

ording to v, and moving 5 times the reverse of the motion given by w.

Still more generally, you 
an repla
e the variables with points or ve
tors; if the sum of the 
oe�
ients

on the points is 0, then the result is a ve
tor, and if the sum of the 
oe�
ients on the points is 1, then the

result is a point. For example, if A, B, and C are points, while u and v are ve
tors, then 2A− 3B + 2C +
4u− 5v is a point (be
ause 2− 3 + 2 = 1), while 2A− 3B + C + 4u− 5v is a ve
tor (be
ause 2− 3 + 1 =
0). Geometri
ally, 2A− 3B + 2C + 4u− 5v means the point that you rea
h by starting at A, moving as

you would move to get to A from B, then moving twi
e as you would move to get to C from B, then mov-

ing 4 times a

ording to u, and moving 5 times the reverse of the motion given by v. (That is, think of

it as A+ (A−B) + 2(C −B) + 4u− 5v.) Similarly, 2A− 3B + C + 4u− 5v is the motion 
onsisting of

moving twi
e as you would move to get to A from B, then moving as you would move to get to C from B,
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then moving 4 times a

ording to u, and moving 5 times the reverse of the motion given by v. (That is,

think of it as 2(A−B) + (C −B) + 4u− 5v.)
Another example of a point is 1/3A+ 1/3B + 1/3C, whi
h is the average of the 3 points. If you

think of this as A+ 2/3 (B −A) + 1/3 (C −B), then you 
an des
ribe this in terms similar to those of the

previous examples, but in this 
ase it s probably better to think of it dire
tly as an average.

If the sum of the 
oe�
ients on the points is neither 1 nor 0, then there is no dire
t geometri
 inter-

pretation of the linear 
ombination, but you 
an still perform 
al
ulations with su
h things; they basi
al-

ly represent internal parts of a larger 
al
ulation, su
h as the 2A− 3B that begins some of the examples

above.

All of the usual algebrai
 identities apply to linear 
ombinations of points and ve
tors. For example,

u+ v = v + u, (A+ u) + v = A+ (u+ v), 2(u+ v) = 2u+ 2v, and so on. Although you 
an prove these

geometri
ally, the simplest way to verify them is to do so 
omponent by 
omponent; then they redu
e to

identities about real numbers.

You 
ould try multiplying and dividing ve
tors by ea
h other using the same method of 
al
ulation as

you use for adding and subtra
ting them, 
omponent by 
omponent. People do this sometimes, but there s

no geometri
 interpretation of these operations, neither dire
tly nor as part of a larger 
al
ulation with a

geometri
 interpretation. So we won t be doing that. Instead, we ll see some other methods of multiplying

ve
tors later on, in Se
tions 1.6�12, on pages 9�17.

The zero ve
tor, denoted 0, represents no motion at all. Its general formula in Rn
is

0 = 〈0, 0, . . . , 0〉.

It obeys algebrai
 rules analogous to those obeyed by the real number 0, su
h as 0+ v = v, v − v = 0,

and A+ 0 = A. (The last of these demonstrates what it means to say that 0 represents no motion at all;

you start at the point A, do nothing, and wind up still at A.)

1.4 The standard basis ve
tors

There are some other spe
ial symbols for spe
ial ve
tors, and these lead to another general system of nota-

tion for ve
tors (and points).

In R2
, there are 2 standard basis ve
tors, i and j:

i = 〈1, 0〉, j = 〈0, 1〉.

In R3
, there are 3 of them:

i = 〈1, 0, 0〉, j = 〈0, 1, 0〉, k = 〈0, 0, 1〉.

In Rn
, there is a shift in the usual notation:

e1 = 〈1, 0, 0, . . . , 0〉, e2 = 〈0, 1, 0, 0, . . . , 0〉, . . . , en = 〈0, 0, . . . , 0, 0, 1〉.

The value of this is that any ve
tor 
an be written as a unique linear 
ombination of the standard basis

ve
tors:

〈a, b〉 = ai+ bj;

〈a, b, c〉 = ai+ bj+ ck;

〈a1, a2, . . . , an〉 = a1e1 + a2e2 + · · ·+ anen.

Work out the right-hand sides of these and see for yourself that you get the left-hand side. (It s a little

annoying that i and j are ambiguous, but as long as you know whether they re supposed to be in R2
or

in R3
, then you know what they mean.)

If a 
omponent of a ve
tor happens to be 1, then you 
an leave it out of the expression in the stan-

dard basis ve
tors; if the 
omponent is negative, then you use subtra
tion instead of addition; if the 
om-

ponent is 0, then you leave that term out entirely. For example, 〈1,−2〉 = 1i+ (−2)j = i− 2j. In R3
,

〈1,−2, 0〉 is also written i− 2j, be
ause the 
omponent on k is 0.
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You 
an now do arithmeti
 with ve
tors by following the ordinary rules of algebra and leaving the

symbols for the standard basis ve
tors alone. For example, instead of 〈1,−2〉+ 〈3, 5〉 = 〈4, 3〉, you 
al
u-

late

(i− 2j) + (3i+ 5j) = (1 + 3)i+ (−2 + 5)j = 4i+ 3j.

Similarly, instead of 2〈1,−2〉 = 〈2,−4〉, you 
al
ulate

2(i− 2j) = 2i− 2(2j) = 2i− 4j.

You 
an even extend this notation to points by introdu
ing O for the origin of the 
oordinate system.

That is,

O = (0, 0, . . . , 0)

in Rn
. Then any point 
an be des
ribed by starting at the origin and moving along a ve
tor whose 
om-

ponents are the 
oordinates of that point; for example, (2, 3) = O + 〈2, 3〉 = O+ 2i+ 3j. Then you 
an

again do 
al
ulations using the rules of algebra; for example, instead of (2, 3) + 〈1,−2〉 = (3, 1), you 
al
u-

late

(O + 2i+ 3j) + (i− 2j) = O + (2 + 1)i+ (3− 2)j = O+ 3i+ j.

The textbook uses this notation for ve
tors most of the time, although it 
ontinues to use a list of 
o-

ordinates with 
ommas for points, whi
h it has to do sin
e it never refers dire
tly to addition of points and

ve
tors.

1.5 Lengths and angles

In many situations, we want to refer to the distan
e between two points, or equivalently to the length of a

ve
tor. This goes by several names; in general, the length, magnitude, or norm of a ve
tor in Rn
is

‖〈v1, v2, . . . , vn〉‖ =
√
v12 + v22 + · · ·+ vn2

.

(Here I ve denoted the length of a ve
tor v as ‖v‖, although the textbook writes this as simply |v| in-
stead.) As a statement about distan
es, this is the n-dimensional generalization of the Pythagorean Theo-

rem.

One basi
 algebrai
 property of lengths is

‖av‖ = |a| ‖v‖.

(Note that you must write |a| when a is a s
alar, even if you 
hoose to use the notation ‖v‖ when v is a

ve
tor.) You 
an 
he
k this from the general formula by fa
toring inside the square root; remember the

identity

√
a2 = |a| for arbitrary real numbers. (It s a 
ommon algebra mistake to think that

√
a2 = a; this

is 
orre
t when a ≥ 0 but not otherwise.) In parti
ular,

‖−v‖ = ‖v‖.

Also,

‖0‖ = 0;


onversely, if ‖v‖ = 0, then it must be that v = 0. (Ultimately this is be
ause a sum of squares of real

numbers 
an only be zero if all of the original numbers are zero.)

There is no general formula for ‖u+ v‖; however, we 
an say

‖u+ v‖ ≤ ‖u‖+ ‖v‖.

This is 
alled the triangle inequality, sin
e if you draw a triangle whose sides are u, v, and their sum

u+ v, then this expresses the fa
t that the length of the last side is the shortest distan
e between its two

endpoints. (You 
an 
he
k this from the formula by squaring both sides, 
an
elling some 
ommon terms,
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squaring again, subtra
ting the two sides, and fa
toring the result as a perfe
t square. You 
an then ar-

gue that this perfe
t square is greater than or equal to zero, so the right-hand side just before the subtra
-

tion is greater than or equal to the left-hand side at that stage, and this remains so upon taking prin
ipal

square roots, adding some 
ommon terms, and taking prin
ipal square roots again. I ll skip the details.)

If v 6= 0 (so that you 
an divide by ‖v‖), then v/‖v‖ is a ve
tor whose own magnitude is 1. (This is
be
ause ∥∥∥∥

v

‖v‖

∥∥∥∥ =
‖v‖
|‖v‖| =

‖v‖
‖v‖ = 1,

using that ‖v‖ ≥ 0.) This is 
alled the unit ve
tor in the dire
tion of v, or simply the dire
tion of v.

The usual notation for this is v̂:

v̂ =
v

‖v‖ .

For some reason, the textbook never introdu
es this notation (or any other notation for this 
on
ept), but

it refers to the idea itself quite often. Noti
e that you 
an write v = ‖v‖v̂; this expresses the 
ommon slo-

gan that a ve
tor has both a length and a dire
tion. (However, the zero ve
tor has only a length, of 0, and
no way to pi
k out any unit ve
tor as its dire
tion.)

If you perform some algebrai
 tri
ks with the triangle inequality and assume that neither u nor v is

the zero ve
tor 0 (so that you 
an divide by their norms), then you 
an also derive the 
ompound inequali-

ty

−1 ≤ ‖u‖2 + ‖v‖2 − ‖u− v‖2
2 ‖u‖ ‖v‖ ≤ 1.

(I ll skip this derivation too, but it s based on �rst repla
ing v with −v, squaring both sides, and rearrang-

ing terms to derive one half of this result, then going ba
k to the beginning and repla
ing u with u− v,

squaring both sides again, and rearranging terms to derive the other half of the result.) If you draw a tri-

angle whose sides are u, v, and u− v (so that u and v are both starting from the same point), then the

Law of Cosines says that the expression in the middle of the 
ompound inequality above is the 
osine of

the angle between the sides u and v, and the inequality veri�es that this lies within the possible range of

values for a 
osine. (If either u or v is the zero ve
tor, then you don t really have a triangle, and this an-

gle doesn t make sense.)

If you have two rays emanating from the same point in a multidimensional spa
e, then the only way

to des
ribe the angle between them is with an angle between 0 and π (or 180◦), whi
h is the range of pos-

sible values of an ar

osine (or inverse 
osine), so taking the ar

osine of the expression above gives you

this angle:

∠(u,v) = acos

Ç
‖u‖2 + ‖v‖2 − ‖u− v‖2

2 ‖u‖ ‖v‖

å
.

(In R2
, and only in R2

, it s possible to distinguish 
lo
kwise and 
ounter
lo
kwise angles, whi
h I ll 
ome

ba
k to when I dis
uss the s
alar 
ross produ
t in Se
tion 1.11 on page 15.) Thus, it s possible to des
ribe

both lengths and angles using ve
tors, through the 
on
ept of the magnitude of a ve
tor. (There s a more

e�
ient way to 
al
ulate this 
osine, whi
h we ll see on page 11 at the end of Se
tion 1.7, using the dot

produ
t, but it s ni
e to know that angles 
an be 
al
ulated from lengths alone.)

Two ve
tors u and v are perpendi
ular or orthogonal if the angle between them is a right angle

(π/2, or 90◦), whose 
osine is 0; the symbol for this is u ⊥ v. In terms of lengths, u and v are perpen-

di
ular when ‖u− v‖2 = ‖u‖2 + ‖v‖2 (or repla
ing v with −v, whi
h would also be perpendi
ular to u,

‖u+ v‖2 = ‖u‖2 + ‖v‖2). Similarly, u and v are parallel if the angle between them is the zero angle

(0, or 0◦), whose 
osine is 1; the symbol for this is u ‖ v. However, people sometimes use this symbol (or

even the word `parallel') to in
lude the 
ase where u and v are antiparallel, meaning that the angle be-

tween them is a straight angle (π, or 180◦), whose 
osine is −1. In terms of lengths, u and v are parallel if

‖u− v‖2 =
(
‖u‖ − ‖v‖

)2
(so ‖u− v‖ =

∣∣‖u‖ − ‖v‖
∣∣
, or ‖u+ v‖ = ‖u‖+ ‖v‖), and u and v are antipar-

allel if ‖u− v‖2 = (‖u‖+ ‖v‖)2 (so ‖u− v‖ = ‖u‖+ ‖v‖, or ‖u+ v‖ =
∣∣‖u‖ − ‖v‖

∣∣
).

Page 8 of 79



However, for many appli
ations of ve
tors, the 
on
ept of length or magnitude really doesn t make

sense! This is be
ause ve
tors des
ribe motion within any spa
e with any 
oordinates, and those 
oordi-

nates might refer to in
ompatible quantities. For example, if x measures time and y measures something

that 
hanges with time but is not itself a time (the height of a falling obje
t, the pri
e of a sto
k, the pop-

ulation of the world, or nearly any other quantity of interest), then it really doesn t make sense to talk

about the magnitude

‖∆P‖ = ‖〈∆x,∆y〉‖ =
√
∆x2 +∆y2.

You 
an see this if you imagine what units of measurement you might use for su
h a magnitude; if x is

measured in se
onds and y is measured in metres (as one might do when talking about the height of a

falling obje
t, for example), then whi
h unit is ‖∆P‖ in? Neither one makes sense, nor does any 
ombi-

nation of them.

So while lengths of ve
tors and angles between them always exist in the realm of mathemati
al ab-

stra
tion, they 
an only be meaningful when all of the 
oordinates measure the same type of quantity.

(Even then, these 
on
epts may or may not really be meaningful, but at least they have a 
han
e.) The

ex
eption to this is that we 
an say whether two nonzero ve
tors are parallel (or antiparallel) without ref-

eren
e to angles: u and v are parallel if there is a s
alar k > 0 su
h that u = kv; they re antiparallel if
there is a s
alar k < 0 su
h that u = kv.

1.6 Proje
tions

If you have two ve
tors u and v, and assuming that neither of them is 0, pla
e them so that they both

start at the same point A and then draw a line from A+ v to the line through A and A+ u so that these

lines interse
t at a right angle. Let B be the point where these lines interse
t; the ve
tor B −A is the

proje
tion of v onto u, denoted proj
u
v. Sometimes people also 
onsider the proje
tion of v perpendi
-

ular to u; this is the ve
tor from B to A+ v:

proj⊥
u
v = v − proj

u
v.

(In general, the symbol `⊥' is used when talking about perpendi
ular things, whi
h the shape of the sym-

bol is supposed to remind you of.)

A related 
on
ept is the 
omponent of v in the dire
tion of u, denoted comp
u
v; this is a s
alar 
ho-

sen so that

proj
u
v = comp

u
v û.

It s a 
ommon mistake to think that proj
u
v has the same dire
tion as u, so that 
onsequently comp

u
v =

‖proj
u
v‖. But in fa
t, proj

u
v 
an just as easily have the opposite dire
tion, so the general rule is

|comp
u
v| = ‖proj

u
v‖.

The 
omponent of v in the dire
tion of u is positive if u and v have roughly the same dire
tion but nega-

tive if they have roughly opposite dire
tions. (It s also possible that this 
omponent is zero, when u and v

are perpendi
ular.)

I have not allowed v to be the zero ve
tor, be
ause then A+ v is simply A, right on the line through A
and A+ u, so it makes no sense to draw anything from that point perpendi
ular to that line. However,

sin
e we re already on the line, we 
an simply take B to be A as well, so that proj
u
v, whi
h is B −A, is

also 0. Thus, we have these results:

proj
u
0 = 0, proj⊥

u
0 = 0, comp

u
0 = 0.

Now proj
u
v and comp

u
v exist no matter what v is (although it s still ne
essary that u 6= 0). On
e we

have that, you 
an verify these fa
ts by drawing the relevant pi
tures:

proj
u
(v +w) = proj

u
v + proj

u
w, so comp

u
(v +w) = comp

u
v + comp

u
w;

proj
u
(av) = a proj

u
v, so comp

u
(av) = a comp

u
v.
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This is all well and good, but if you know a little trigonometry, then you 
an get a ni
e formula for

this 
omponent. This is be
ause v forms the hypotenuse of a right triangle, one of whose legs is proj
u
v,

and whose angle next to that leg is ∠(u,v) if u and v have roughly the same dire
tion or π − ∠(u,v) if
they have roughly opposite dire
tions. In the �rst 
ase,

cos∠(u,v) =
‖proj

u
v‖

‖v‖ =
comp

u
v

‖v‖ ;

in the other 
ase,

cos∠(u,v) = − cos
(
π − ∠(u,v)

)
= −‖proj

u
v‖

‖v‖ = −− comp
u
v

‖v‖ =
comp

u
v

‖v‖ .

In the middle, when u and v are perpendi
ular, then cos∠(u,v) and comp
u
v are both 0. So in any 
ase,

comp
u
v = ‖v‖ cos∠(u,v)

as long as v 6= 0. (If v = 0, then the angle ∠(u,v) doesn t make sense, but the equation is still true in

a way, sin
e it be
omes the true statement 0 = 0 no matter what value you use for the angle.) We saw

on page 8 how to express this 
osine using only ‖u‖, ‖v‖, and ‖u− v‖, but for now, let s just leave it as
cos∠(u,v).

1.7 The dot produ
t

To treat u and v equally, the disussion of proje
tions and 
omponents above suggests that we ll get an

interesting operation if we de�ne

u · v = ‖u‖ comp
u
v = ‖u‖ ‖v‖ cos∠(u,v).

This indeed has many ni
e properties; for example, these follow from the 
orresponding properties for


omponents:

u · (v +w) = (u · v) + (u ·w),

u · (av) = a(u · v).

However, sin
e u and v appear symmetri
ally in the formula with the 
osine, we have

u · v = v · u,

and then these properties also follow:

(u+ v) ·w = (u ·w) + (v ·w),

(au) · v = a(u · v).

The de�nition ‖u‖ comp
u
v allows v to be 0, but not u. However, sin
e the operation is symmet-

ri
 when the ve
tors are nonzero, we 
an de�ne it so that it 
ontinues to be symmetri
, so that 0 · v = 0
as well as v · 0 = 0. In parti
ular, we de�ne 0 · 0 to be 0. (Thus, it remains true in a way that u · v =
‖u‖ ‖v‖ cos∠(u,v), even when ∠(u,v) doesn t make sense, be
ause in that 
ase the equation be
omes

0 = 0 no matter what value you use for the angle.) Then the properties listed above 
ontinue to be true.

By this point, you should see where the notation 
omes from; this operation has a lot of the same

properties as multipli
ation. It s variously 
alled inner multipli
ation (for the operation) or the inner

produ
t (for the result of the operation), the s
alar produ
t (be
ause the result is a s
alar), or (naming

it after its notation) the dot produ
t. (Don t 
onfuse s
alar multipli
ation, des
ribing the operation for

av, with the s
alar produ
t, des
ribing the result of the operation u · v.) The properties above state that

the dot produ
t distributes over addition, that it s 
ommutative, asso
iative with s
alar multipli
ation, et
.
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Sin
e angles 
an be expressed in terms of lengths, so 
an the dot produ
t; you get

u · v =
‖u‖2 + ‖v‖2 − ‖u− v‖2

2
,

an expression that works regardless of whether u and v are nonzero. An important spe
ial 
ase is when u

and v are the same ve
tor; then this simpli�es to

v · v = ‖v‖2.

(Another way to see this is that the angle between a ve
tor and itself is 0, the 
osine of whi
h is 1, so

v · v = ‖v‖ ‖v‖ cos 0 = ‖v‖2.)
However, as a pra
ti
al matter, there is a better way to 
al
ulate this. Be
ause the dot produ
t dis-

tributes over addition and asso
iates with s
alar multipli
ation, we only need to know i · i, i · j, and so on;

that is, we only need to know what it does to the standard basis ve
tors. Sin
e these ve
tors are all per-

pendi
ular to one another, so the 
osine between any two di�erent ones is 0, these dot produ
ts are almost

all 0. The ex
eption is the dot produ
t of one of these with itself; sin
e these ve
tors all have a magnitude

of 1, the dot produ
t of any one with itself is 12 = 1. So in 2 dimensions,

〈a, b〉 · 〈c, d〉 = (ai+ bj) · (ci+ dj) = ac i · i+ ad i · j+ bc j · i+ bd j · j = ac 1 + ad 0 + bc 0 + bd 1 = ac+ bd;

in 3 dimensions,

〈a, b, c〉 · 〈d, e, f〉 = ad+ be+ cf

by a similar 
al
ulation, and most generally in n dimensions,

〈a1, a2, . . . , an〉 · 〈b1, b2, . . . , bn〉 = a1b1 + a2b2 + · · ·+ anbn.

That is, you multiply 
orresponding 
omponents of the ve
tors and add these all up. For example,

〈1,−2〉 · 〈3, 5〉 = (1)(3) + (−2)(5) = 3− 10 = −7.

Now its best to give formulas for angles, proje
tions, and 
omponents in terms of the dot produ
t,

rather than the other way around. So:

comp
u
v =

u · v
‖u‖ ;

proj
u
v = comp

u
v û =

u · v
‖u‖2

u =
u · v
u · uu;

proj⊥
u
v = v − proj⊥

u
v = v − u · v

u · uu =
(u · u)v − (u · v)u

u · u ;

∠(u,v) = acos
comp

u
v

‖v‖ = acos
u · v

‖u‖ ‖v‖ .

Even lengths 
an be expressed using the dot produ
t:

‖v‖ =
√
v · v.

1.8 Row ve
tors

I developed the dot produ
t geometri
ally, and we ve seen that it s 
losely related to lengths and angles.

At the top of page 9 at the end of Se
tion 1.5, I remarked that lengths and angles don t always make sense

in 
ontext, and the same goes for the the dot produ
t (as well as proje
tions and 
omponents onto a given

ve
tor). For example, if x is measured in se
onds (s) and y is measured in metres (m), then 〈1 s,−2m〉 ·
〈3 s, 5m〉 = 3 s2 − 10m2

doesn t really make sense.
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On the other hand, sometimes dot produ
ts 
an make sense in a 
ontext like this. For example, sup-

pose that x represents the time at whi
h something o

urs and y represents its lo
ation, so that the ve
-

tor ∆P = 〈∆x,∆y〉 represents a passage of time together with a 
hange in lo
ation, like the ve
tors in the

previous paragraph might do; then if the obje
t in question is a missile that s going to explode at some un-

kown time and distan
e and you think that it s going to move slowly while I think that it s going to move

qui
kly, then we might make a bet where I pay you $1 for every se
ond that it lasts until it explodes but

you pay me $2 for every metre that it travels. If it travels 5 metres in 3 se
onds before exploding, then

you ll get (1)(3)− (2)(5) = −7 dollars, or put another way, you ll owe me $7. This 
an be represented as

the dot produ
t

〈$1/s,−$2/m〉 · 〈3 s, 5m〉 = ($1/s)(3 s) + (−$2/m)(5m) = $3− $10 = −$7,

where the �rst ve
tor is determined by the nature of our bet (you get $1 per se
ond and pay $2 per me-

tre), while the se
ond ve
tor is determined by the behaviour of the missile (it lasts 3 se
onds and travels

5 metres).

Now, while the ve
tor 〈3 s, 5m〉 really does des
ribe a 
hange in x and a 
hange in y, where x and y
represent time and position as I stated above, the ve
tor 〈$1/s,−$2/m〉 does not. In the 
ontext of mea-

suring time and position, this ve
tor is a di�erent kind of ve
tor, one for whi
h a dot produ
t with an or-

dinary ve
tor makes sense, even though lengths and angles don t make sense for any of these ve
tors. A

ve
tor like this is variously 
alled a dual ve
tor, a 
ove
tor, or a row ve
tor; in the last 
ase, an or-

dinary ve
tor may be 
alled a 
olumn ve
tor. I ll use the terminology of row and 
olumn ve
tors, whi
h

ultimately 
omes from matrix theory, as you ll see in Se
tion 1.13. Sometimes row ve
tors are distinguished

from 
olumn ve
tors by 
hoosing a di�erent notation for ve
tors from the 
ommon notations listed on

page 3. When 
olumn ve
tors are written

[
a
b

]
, row ve
tors are usually written [ a b ]. This notation al-

so 
omes from matrix theory, as you ll also see in Se
tion 1.13.

Row ve
tors obey the same rules of arithmeti
 as 
olumn ve
tors; here is a list of operations with

these that make sense even when lengths and angles do not:

• Addition: adding a 
olumn ve
tor to a point to get another point, adding two 
olumn ve
tors togeth-

er to get another 
olumn ve
tor, adding two row ve
tors together to get another row ve
tor;

• Subtra
tion: subtra
ting a 
olumn ve
tor from a point to get another point, subtra
ting one 
olumn

ve
tor from another to get another 
olumn ve
tor, subtra
ting one row ve
tor from another to get

another row ve
tor;

• Multipli
ation: multiplying a 
olumn ve
tor by a s
alar to get another 
olumn ve
tor, multiplying a

row ve
tor by a s
alar to get another row ve
tor, multiplying a row ve
tor and a 
olumn ve
tor to get

a s
alar.

In parti
ular, there is no useful notion of `row point' that 
an intera
t with row ve
tors in the way that

points intera
t with 
olumn ve
tors.

1.9 Area

Now let s go ba
k to a geometri
 
on
eption of ve
tors. If you take two ve
tors u and v and pla
e them to

start at a point A, then you 
an 
onne
t their endpoints to make a triangle and then ask what the area of

that triangle is. It s a
tually a bit ni
er to think of that triangle as half of a parallelogram: two opposite

sides of the parallelogram are u, one running from A to A+ u, the other running from A+ v to A+ v +
u; the other two opposite sides are v, one running from A to A+ v, the other running from A+ u to A+
u+ v (whi
h of 
ourse is the same as A+ v + u).

This question 
an be asked in any number of dimensions, and the answer may be written ‖u× v‖.
This notation suggests that this area will be the magnitude of something more fundamental, whi
h is u× v

itself, and this is true to an extent, but exa
tly how that works depends on how many dimensions we re in.

So for now, I m just going to sti
k with ‖u× v‖. However, I 
an give you the terminology: whatever u× v

is, the operation may be 
alled outer multipli
ation, and the result may be 
alled the outer produ
t

or the 
ross produ
t; and in 3 dimensions (where it is best known), it s also 
alled the ve
tor produ
t.
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With the help of trigonometry,

‖u× v‖ = ‖u‖ ‖v‖ sin∠(u,v).

Noti
e that this sine is always positive, sin
e the angle lies between 0 and π. For su
h an angle θ, sin θ =√
1− cos2 θ; with the help of the dot produ
t, this means that

‖u× v‖ =
»
‖u‖2 ‖v‖2 − (u · v)2.

(This formula makes sense even if u or v is the zero ve
tor, in whi
h 
ase the result is zero.) If you write

out u · v in this expression in terms of the lengths ‖u‖, ‖v‖, and ‖u− v‖, then the formula fa
tors as

‖u× v‖ =

√
−(‖u‖+ ‖v‖+ ‖u− v‖)(‖u‖+ ‖v‖ − ‖u− v‖)(‖u‖ − ‖v‖+ ‖u− v‖)(‖u‖ − ‖v‖ − ‖u− v‖)

2
.

(Despite the initial minus sign, the expression inside the square root is positive, sin
e the last fa
tor is

negative.) This result was known to the an
ient Greek�Egyptian mathemati
ian and inventor Hero (or

Heron) of Alexandria, even though he didn t use ve
tors; he expressed it dire
tly using the distan
es be-

tween the points. (Hero also invented the steam engine, the windmill, and the vending ma
hine, although

none of those 
aught on at the time.)

If u and v are parallel (or antiparallel), or if either (or both) of them is the zero ve
tor 0, then |u · v| =
‖u‖ ‖v‖, so ‖u× v‖ = 0. From another perspe
tive, if u and v are parallel, then the angle between them

is 0, whose sine is 0; if they re antiparallel, then the sine is sinπ, whi
h is still 0. In this 
ase, you don t

really have a parallelogram, but a simple line segment (or a point if u and v are both 0), whose area is

indeed 0.
Here are some important algebrai
 properties of ‖u× v‖:

‖u× v‖ = ‖v × u‖;
‖u× av‖ = |a| ‖u× v‖;

‖u× v‖ =
∥∥u× proj⊥

u
v
∥∥ = ‖u‖

∥∥proj⊥
u
v
∥∥
.

(The last of these assumes that u 6= 0, so that proje
tion perpendi
ular to u makes sense.) These should

be obvious geometri
ally; in parti
ular, the last of these states that the area of a parallelogram is the same

as the area of a re
tangle with the same base and height.

1.10 The 
ross produ
t in three dimensions

For ve
tors in R3
, we 
an interpret u× v as a ve
tor. The magnitude ‖u× v‖ is the area from the previ-

ous se
tion, so we only need to des
ribe the dire
tion of u× v: it will be perpendi
ular to both u and v.

Most of the time, there are pre
isely two dire
tions perpendi
ular to two ve
tors u and v in R3
. To

de
ide whi
h of these is the dire
tion of u× v, we use the right-hand rule: if you start by pointing the �n-

gers of your right hand in the dire
tion of u, 
url them to point in the dire
tion of v, and then sti
k out

your thumb, then your thumb will point roughly in the dire
tion of u× v. (This should be used togeth-

er with a right-handed 
oordinate system: if you point your �ngers along the positive x-axis, 
url them to

point along the positive y-axis, and then sti
k out your thumb, then your thumb will point roughly along

the positive z-axis.) If u and v happen to be parallel (or antiparallel), or if either (or both) of them is the

zero ve
tor 0, then this won t work; however, in that 
ase, ‖u× v‖ = 0, so then u× v must be 0, whi
h

has no dire
tion.

Like the dot produ
t, this operation distributes over addition and asso
iates with s
alar multipli
a-

tion:

u× (v +w) = u× v + u×w,

u× av = a(u× v).
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The latter fa
t is easy to see, sin
e we have a 
orresponding fa
t for ‖u× av‖ and the dire
tion of u× av
reverses when a is negative. The �rst of these is more di�
ult; it uses the result for ‖u× v‖ in terms of

proj⊥
u
v. This allows you to draw everything in the plane perpendi
ular to u; if you look in the dire
tion

of u when looking at this plane, then u× v rotates proj⊥
u
v (whi
h is in this plane) 
lo
kwise through a

right angle and s
ales it by ‖v‖; sin
e both this operation and proje
tion distribute over addition, so does

the 
ross produ
t itself.

However, there is one important di�eren
e between the properties of the dot and 
ross produ
ts:

u× v = −v× u.

This is be
ause, while the magnitudes are the same, the dire
tions are reversed, sin
e you re 
urling your

�ngers the other way.

For pra
ti
al 
al
ulations, it s again enough to know what happens to the standard basis ve
tors:

i× i = 0, i× j = k, i× k = −j,

j× i = −k, j× j = 0, j× k = i,

k× i = j, k× j = −i, k× k = 0.

Based on this,

〈a, b, c〉 × 〈d, e, f〉 = (ai+ bj+ ck)× (di+ ej+ fk) = (bf − ce)i+ (cd− af)j+ (ae− bd)k

= 〈bf − ce, cd− af, ae− bd〉.

For example,

〈1,−2, 0〉 × 〈2, 2, 1〉 = 〈(−2)(1)− (0)(2), (0)(2)− (1)(1), (1)(2)− (−2)(2)〉 = 〈−2− 0, 0− 1, 2 + 4〉 = 〈−2,−1, 6〉.

If you know about determinants, then you 
an think of

〈a, b, c〉 × 〈d, e, f〉 =

∣∣∣∣∣∣

i j k

a b c
d e f

∣∣∣∣∣∣
;

the value of this determinant is the value of the 
ross produ
t.

Along with the 
ross produ
t, people often look at the so-
alled triple s
alar produ
t of three ve
tors

in R3
; this is simply

u · (v ×w).

This 
an be 
al
ulated with determinants as well:

〈a, b, c〉 · 〈d, e, f〉 × 〈g, h, i〉 =

∣∣∣∣∣∣

a b c
d e f
g h i

∣∣∣∣∣∣
.

Geometri
ally, this represents a volume; more pre
isely, |u · v ×w| is the volume of a parallelepiped whose

edges are u, v, and w, and u · v ×w is positive if you 
an 
url the �ngers of your right hand from u to v

and sti
k out your thumb along w but negative if your thumb points the wrong way.
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1.11 The 
ross produ
t in two dimensions

For ve
tors in R2
, we 
an interpret u× v as a s
alar, so this is sometimes 
alled the s
alar 
ross produ
t.

The absolute value |u× v| is the ‖u× v‖ from Se
tion 1.9 starting on page 12; u× v itself is positive if

you turn 
ounter
lo
kwise to go from u to v but negative if you turn 
lo
kwise. (Here I m assuming a


ounter
lo
kwise 
oordinate system: the rotation from the positive x-axis to the positive y-axis is 
oun-
ter
lo
kwise.) If u and v are parallel (or antiparallel), or if either of them is the zero ve
tor 0, then u× v

is just 0.
The 
ross produ
t in 2 dimensions follows the same algebrai
 rules as in 3 dimensions:

u× (v +w) = u× v + u×w,

u× av = a(u× v),

u× v = −v× u.

If anything, these are easier to establish geometri
ally than the 
orresponding properties in R3
.

Another way to think of the s
alar 
ross produ
t is to embed R2
within R3

; that is, we take the z-
o-
ordinate of every point to be �xed (typi
ally z = 0), so that the z-
omponent of every ve
tor is ∆z = 0.
Then instead of the s
alar 
ross produ
t u× v, you 
an speak of the triple s
alar produ
t k · u× v. Yet

another way to think of it is as a dot produ
t; mu
h as a− b is the sum of a and −b, so u× v is the dot

produ
t of u and ×v, where ×v is the result of rotating v 
lo
kwise through a right angle. (In general,

the result of rotating v 
lo
kwise by θ radians is cos θ v +× sin θ v; if you rotate 
ounter
lo
kwise, as is

more 
ommon, then the result is cos θ v −× sin θ v.)
You 
an also speak of signed angles in 2 dimensions; if you treat a 
ounter
lo
kwise angle as positive

and a 
lo
kwise angle as negative, then

u× v = ‖u‖ ‖v‖ sin ∠̄(u,v),

where the bar over the angle symbol indi
ates this signed angle. There s even a version of the signed an-

gle in 3 dimensions, making this same equation for u× v true; ∠̄(u,v) is a ve
tor whose magnitude is

the (positive) angle between u and v and whose dire
tion is given by the right-hand rule, while the sine

of this ve
tor is a ve
tor de�ned by sinw = sin ‖w‖ ŵ. (The 
osine of a ve
tor remains a s
alar: cosw =
cos ‖w‖.) This paragraph is not important for this 
ourse, but it has uses in physi
s related to angular

momentum.

For pra
ti
al 
al
ulations, sin
e i× i = 0, i× j = 1, j× i = −1, and j× j = 0, the formula is

〈a, b〉 × 〈c, d〉 = ad− bc.

For example,

〈1,−2〉 × 〈3, 5〉 = (1)(5)− (−2)(3) = 5 + 6 = 11.

If you know about determinants, then

〈a, b〉 × 〈c, d〉 =
∣∣∣∣
a b
c d

∣∣∣∣.

Similarly,

×〈a, b〉 =
∣∣∣∣
i j

a b

∣∣∣∣ = 〈b,−a〉.

Cross produ
ts in more than 3 dimensions 
an also be done, but in that 
ase the result is neither a

s
alar nor a ve
tor but a more general 
on
ept 
alled a tensor. (Similarly, ×v alone is a tensor in more

than 2 dimensions.) While the 
ross produ
t in 4 dimensions (and ×v alone in 3 dimensions) 
an be inter-

preted as a matrix (see Se
tion 1.13), more general tensors are even more 
ompli
ated, and we will not be

using these in this 
ourse.
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1.12 Orientation

The dot and 
ross produ
ts both rely on the geometri
 notion of length, but the 
ross produ
t addition-

ally depends on an orientation; this is the 
hoi
e between the right-hand and left-hand rules (in 3 di-

mensions) or between 
ounter
lo
kwise and 
lo
kwise angles (in 2 dimensions). While our physi
al spa
e

really does have lengths and angles, the 
hoi
e of orientation is arbitrary, so results that apply to geometry

shouldn t depend on it.

Just as we 
an distinguish row ve
tors from 
olumn ve
tors in 
ontexts where lengths and angles

don t make sense, so we 
an distinguish axial ve
tors from polar ve
tors in 
ontexts where orientation is

arbitrary. So, a polar ve
tor is an ordinary ve
tor representing a 
hange in position, but an axial ve
-

tor or pseudove
tor is a ve
tor together with a 
hoi
e of orientation, where we may reverse our 
hoi
e

of orientation as we please so long as we repla
e the ve
tor with its opposite when we do so. For example,

while a polar ve
tor in R3
may be fully des
ribed as 〈−2,−1, 6〉, an axial ve
tor in R3

might be des
ribed

as 〈−2,−1, 6〉 right-handed, or (for the same axial ve
tor) as 〈2, 1,−6〉 left-handed. Thus you 
an say, for

example,

〈1,−2, 0〉 × 〈2, 2, 1〉 = 〈−2,−1, 6〉 right-handed = 〈2, 1,−6〉 left-handed.

(There is still a 
onvention in play here, however; in a left-handed 
oordinate system, you would write

〈1,−2, 0〉 × 〈2, 2, 1〉 = 〈−2,−1, 6〉 left-handed.)
Similarly, a pseudos
alar is a s
alar together with a 
hoi
e of orientation, where again we may re-

verse our 
hoi
e of orientation as we please so long as we repla
e the s
alar with its opposite. In R2
, the


ross produ
t of two ve
tors is a pseudos
alar; in R3
, the triple s
alar produ
t of three ve
tors is a pseu-

dos
alar. For example,

〈1,−2〉 × 〈3, 5〉 = 11 
ounter
lo
kwise = −11 
lo
kwise,

and

〈1,−2, 0〉 · 〈2, 2, 1〉 × 〈0, 3, 5〉 = 27 right-handed = −27 left-handed.

Axial ve
tors obey the same rules of arithmeti
 as polar ve
tors; here is a list of operations with these

that make sense in R3
:

• Addition: adding a polar ve
tor to a point to get another point, adding two polar ve
tors together to

get another polar ve
tor, adding two axial ve
tors together to get another axial ve
tor;

• Subtra
tion: subtra
ting a polar ve
tor from a point to get another point, subtra
ting one polar ve
-

tor from another to get another polar ve
tor, subtra
ting one axial ve
tor from another to get another

axial ve
tor;

• S
alar multipli
ation: multiplying a polar ve
tor by a s
alar to get another polar ve
tor, multiplying

an axial ve
tor by a s
alar to get another axial ve
tor, multiplying a polar ve
tor by a pseudos
alar to

get an axial ve
tor, multiplying an axial ve
tor by a pseudos
alar to get a polar ve
tor;

• Inner multipli
ation (dot produ
t): multiplying two polar ve
tors to get a s
alar, multiplying a polar

ve
tor and an axial ve
tor to get a pseudos
alar, multiplying two axial ve
tors to get a s
alar;

• Outer multipli
ation (
ross produ
t): multiplying two polar ve
tors to get an axial ve
tor, multiplying

a polar ve
tor and an axial ve
tor to get a polar ve
tor, multiplying two axial ve
tors to get an axial

ve
tor.

Similarly, pseudos
alars 
an be added or subtra
ted to produ
e more pseudos
alars and 
an be multiplied

together to produ
e an ordinary s
alar, or you 
an multiply a s
alar and a pseudos
alar to produ
e an-

other pseudos
alar. In R2
, the list of operations is the same, ex
ept that the result of a 
ross produ
t is a

s
alar or a pseudos
alar rather than a ve
tor (a polar ve
tor) or a pseudove
tor (an axial ve
tor).

The rule of thumb for all of this is that you 
an only add or subtra
t things that are alike in every

way, but you 
an multiply anything together; the result is `pseudo' if you multiplied together an odd num-

ber of pseudothings (so pseudos 
an
el, like minus signs, in pairs), where the 
ross produ
t introdu
es an

extra pseudo.

In the most general 
ase, where you don t have a good notion of length and also don t have any way

to prefer one orientation over another, you have polar 
olumn ve
tors (the ordinary notion of ve
tor), axial
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olumn ve
tors, polar row ve
tors, and axial row ve
tors. In general, only polar 
olumn ve
tors 
an in-

tera
t with points. None of this a�e
ts 
al
ulations when properly done, but like keeping tra
k of units,

keeping tra
k of varian
e (row vs 
olumn) and 
hirality (polar vs axial) 
an prevent you from a

identally

doing meaningless 
al
ulations.

1.13 Matri
es

This material is optional for now, but it will be useful in Se
tion 4.8. Re
all from Se
tion 1.8 above that

we sometimes want to distinguish 
olumn ve
tors (the usual kind) from row ve
tors (whi
h appear in dot

produ
ts with 
olumn ve
tors). One way to distinguish them that I mentioned is to write 〈a, b〉 as
[
a
b

]

when it s a 
olumn ve
tor but as [ a b ] when it s a row ve
tor. A matrix (plural matri
es) generalizes

both of these; it s an array of entries arranged in both 
olumns and rows. A typi
al example of a matrix is

ï
a b c
d e f

ò
;

this matrix has 2 rows and 3 
olumns, so we 
all it a 2-by-3 matrix. Thus, a 
olumn ve
tor in n dimen-

sions is a matrix with n rows and 1 
olumn (also 
alled a 
olumn matrix ), while a row ve
tor in n dimen-

sions is a matrix with 1 row and n 
olumns (also 
alled a row matrix ). But for matri
es in general, the

number of rows and the number of 
olumns 
ould ea
h be any whole number.

You 
an multiply any matrix by a s
alar, and you 
an add or subtra
t two matri
es if they have the

same size to get another matrix of that size. This works entry by entry, just as with ve
tors. But there is

also an operation that generalizes the dot produ
t: matrix multipli
ation. In general, you 
an multi-

ply an m-by-n matrix and an n-by-o matrix to get an m-by-o matrix. The entry in row i and 
olumn j in
the produ
t matrix is obtained as the dot produ
t of row i of the �rst matrix and 
olumn j of the se
ond
matrix, ea
h thought of a ve
tor in n dimensions. (This operation distributes over matrix addition and

asso
iates with s
alar multipli
ation, whi
h is why we 
an think of it as a kind of multipli
ation.) For ex-

ample, multiply the 2-by-3 matrix above by the 3-by-1 matrix that is the ve
tor 〈x, y, z〉 thought of as a

olumn matrix, to get a 2-by-1 matrix:

ï
a b c
d e f

ò

x
y
z


 =

ï 〈a, b, c〉 · 〈x, y, z〉
〈d, e, f〉 · 〈x, y, z〉

ò
=

ï
ax+ by + cz
dx+ ey + fz

ò
,

whi
h is the ve
tor 〈ax+ by + cz, dx+ ey + fz〉 thought of as a 
olumn matrix. (In a way, this is the most

fundamental thing that matri
es do: they transform ve
tors in a homogeneous linear way.) This opera-

tion has many uses, but the reason that I m bringing it up here is that you 
an use it in the multivariable

Chain Rule in Se
tion 4.8.

Another 
ommon operation on matri
es is the transpose. Although we won t really need it in this


ourse, there s some notation related to it that you might see even in material about ve
tors, so it s worth

mentioning here. This is the transpose, in whi
h the rows and 
olumns are swapped. The transpose of a

matrix A is denoted A⊤
; for example,

ï
a b c
d e f

ò⊤
=



a d
b e
c f



.

The upper left and lower right positions are un
hanged, while the lower left and upper right swit
h pla
es.

When applied to ve
tors, this operation turns row ve
tors into 
olumn ve
tors and 
olumn ve
tors into

row ve
tors. For this reason, yet another notation for the 
olumn ve
tor 〈a, b〉, whi
h is really a 
olumn

matrix

[
a
b

]
, is [ a b ]

⊤
. (That way, you 
an write it all in one line.) Conversely, an alternative notation

for the dot produ
t v ·w of two ve
tors (themselves thought of as 
olumn matri
es) is v⊤w; here, the

transpose turns the 
olumn matrix v into a row matrix, this 1-by-n row matrix v⊤
is multiplied by the

n-by-1 
olumn matrix w to produ
e a 1-by-1 matrix (with only one entry), and this is then interprted as a

s
alar (its only entry). This is kind of a 
ompli
ated way to think of the dot produ
t, but some people like

to write it like that.
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2 Parametrized 
urves

Besides individual points and ve
tors, one 
an also 
onsider variable points and ve
tors, whi
h are the out-

puts of point- and ve
tor-valued fun
tions and 
an be interpreted geometri
ally as parametrized 
urves.

2.1 Point- and ve
tor-valued fun
tions

A point-valued fun
tion in Rn

onsists of n ordinary fun
tions, all with the same domain. For example,

a point-valued fun
tion in R2

onsists of 2 fun
tions with the same domain, say f(t) = t2 and g(t) = t3.

We put these together into a single fun
tion (f, g), whi
h takes a real-number t as input and produ
es the

point as output:

(f, g)(t) =
(
f(t), g(t)

)
= (t2, t3) = O + t2i+ t3j

(in this example), where O is the origin of a 
oordinate system and i and j are its standard basi
 ve
tors.

A ve
tor-valued fun
tion in Rn
also 
onsists of n ordinary fun
tions, all with the same domain. But

now we think of the output as a ve
tor:

〈f, g〉(t) = 〈f(t), g(t)〉 = 〈t2, t3〉 = t2i+ t3j

(in this example). If we want to know whether one of these fun
tions is 
ontinuous or di�erentiable, then

we just look at ea
h of its 
omponents separately. For example, sin
e the fun
tions f and g above are 
on-

tinuous and di�erentiable everywhere, so are the point-valued fun
tions (f, g) and the ve
tor-valued fun
-

tion 〈f, g〉.
The textbook often doesn t distinguish between a point P and its position ve
tor r = P −O. Con
ep-

tually, they re very di�erent, sin
e you 
an talk about points and ve
tors geometri
ally without bringing


oordinates into it, so the 
on
epts are meaningful even if you don t pi
k a point and 
all it the origin. On

the other hand, when doing 
al
ulations, it s easy to 
on�ate them; sin
e the 
oordinates of O are all 0,
when you do the subtra
tion P −O to get r, you �nd that the 
omponents of r are exa
tly the same as

the 
oordinates of P . Still, you should always keep in mind whether a given expression really refers to a

point (a lo
ation) or to a ve
tor (a movement).

In parti
ular, a point-valued fun
tion 
an be viewed as a parametrized 
urve; ea
h value of the

input t (whi
h in this 
ontext is 
alled a parameter) gives a point, and all of these points together make

up a 
urve. A ve
tor-valued fun
tion only de�nes a 
urve by interpreting ea
h ve
tor with referen
e to a

point O deemed to be the origin, but that is how the textbook insists on doing it starting in Chapter 12.

However, this isn t an issue in Chapter 10, sin
e the textbook isn t dis
ussing ve
tors there.

2.2 Velo
ity and a

eleration

If P is a point, then the di�eren
e ∆P is a ve
tor (be
ause it s the result of subtra
ting two points), and

then the di�erential dP is an in�nitesimal ve
tor. If P is a fun
tion of some s
alar quantity t, then dP/dt
makes sense, be
ause it s a ve
tor divided by a s
alar, but now it s no longer in�nitesimal (unless it hap-

pens to be zero). In other words, the derivative of a point with respe
t to a s
alar is a ve
tor. Another way

to see this is that if F is a point-valued fun
tion, then its derivative F ′
is a ve
tor-valued fun
tion:

F ′(t) = lim
h→0

Å
F (t+ h)− F (t)

h

ã
;

�rst subtra
t two points to get a ve
tor, then divide by the s
alar h to get another ve
tor, and �nally take

the limit of these ve
tors to get a ve
tor. Of 
ourse, the derivative of a ve
tor with respe
t to a s
alar is

also a ve
tor; in other words, the derivative of a ve
tor-valued fun
tion is also a ve
tor-valued fun
tion.

For example, if P gives the position of some obje
t at time t, then P is a point, but dP/dt, the velo
-

ity of the obje
t, is a ve
tor. (Note that the magnitude of this ve
tor is the obje
t s speed.) If we write v

for dP/dt (whi
h 
an also be written as dr/dt), then dv/dt is the a

eleration of the obje
t, whi
h is also

a ve
tor. (Physi
ists and me
hani
al engineers use the word `a

eleration' like this, to indi
ate any 
hange

in velo
ity �speed or dire
tion� over time. In everyday language, this word means something more like

d‖v‖/dt, the derivative of speed with respe
t to time, whi
h is the same as the s
alar 
omponent of the

a

eleration in the dire
tion of the velo
ity. This is positive if the obje
t is speeding up and negative if the

obje
t is slowing down, or de
elerating. Se
tion 12.5 of the textbook dis
usses all of this in detail, but we

won t get into it in this 
ourse.)
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2.3 Integrating ve
tor-valued fun
tions

Reversing this, if you take the inde�nite integral of a ve
tor, then the result may be either a point or a

ve
tor, be
ause di�erentiating either of these yields a ve
tor. This ambiguity is pa
kaged into the 
on-

stant of integration. For example,

r
〈2t, 3〉dt = 〈t2, 3t〉+ C, whi
h is a point if C is a point and a ve
tor

if C is a ve
tor. (If C is a ve
tor, then you may want to 
all it C instead, but that is just a 
onvention,

not a requirement.) The de�nite integral of a ve
tor, however, is always a ve
tor: fundamentally, you get

it by adding up in�nitely many in�nitesimal ve
tors (or approximate it by adding up a large number of

small ve
tors), and adding up ve
tors yields a ve
tor; in pra
ti
e, you usually 
al
ulate it by subtra
ting

inde�nite integrals, and regardless of whether you view the inde�nite integrals as points or as ve
tors, sub-

tra
ting them yields a ve
tor. For example, both

r 1

t=0〈2t, 3〉dt = 〈t2, 3t〉|1t=0 = 〈1, 3〉 − 〈0, 0〉 = 〈1, 3〉, andr 1

t=0
〈2t, 3〉dt = (t2, 3t)|1t=0 = (1, 3)− (0, 0) = 〈1, 3〉 give the same result. In fa
t, either of them 
ould be

pa
kaged up as

w 1

t=0
〈2t, 3〉dt =

〈w 1

t=0
2t dt,

w 1

t=0
3 dt

〉
=
¨
t2|1t=0, 3t|

1
t=0

∂
= 〈1− 0, 3− 0〉 = 〈1, 3〉.

Putting this all together, 
onsider the initial-value problem in whi
h the a

eleration of an obje
t is

−32k = 〈0, 0,−32〉 (whi
h is the a

eleration of a freely falling obje
t near Earth s surfa
e, if we use units

of feet and se
onds), the obje
t s initial velo
ity is 〈3, 0, 4〉 (so a speed of 5 ft/s eastward and upward with

a slope of 4/3), and the obje
t s initial position is (0, 0, 100) (so 100 feet above the origin on the ground).

Then you 
an 
al
ulate a general formula for the obje
t s position P as a fun
tion of the elapsed time t by
integrating:

dv

dt
= 〈0, 0,−32〉;

dv = 〈0, 0,−32〉dt;w
v=〈3,0,4〉

dv =
w
t=0

〈0, 0,−32〉dt;

v − 〈3, 0, 4〉 = 〈0, 0,−32t〉 − 〈0, 0,−32(0)〉;
v = 〈3, 0, 4〉+ 〈0, 0,−32t〉;

dP

dt
= 〈3, 0, 4− 32t〉;

dP = 〈3, 0, 4− 32t〉dt;w
P=(0,0,100)

dP =
w
t=0

〈3, 0, 4− 32t〉dt;

P − (0, 0, 100) = 〈3t, 0, 4t− 16t2〉 −
〈
3(0), 0, 4(0)− 16(0)

2〉
;

P = (3t, 0, 100 + 4t− 16t2).

In other words, the position after t se
onds is 3t feet east of the origin at a height of 100 + 4t− 16t2 feet.

In the 
ourse of solving this, I ve used the semide�nite integral :

w
t=a

f(t) dt =
w t

τ=a
f(τ ) dτ .

The Fundamental Theorem of Cal
ulus allows us to 
al
ulate these integrals easily if we already know an

inde�nite integral: w
t=a

F ′(t) dt = F (t)− F (a).

This is very handy when solving initial-value problems. Sin
e v = 〈3, 0, 4〉 when t = 0, I was doing the

same operation to both sides of the equation in the �rst step in whi
h I introdu
ed semide�nite integrals;

similarly, the se
ond introdu
tion of semide�nite integrals is valid be
ause P = (0, 0, 100) when t = 0. To
solve this problem using inde�nite integrals instead requires two extra steps (one for ea
h integration) to

�nd the 
onstants asso
iated with the inde�nite integrals, but using semide�nite integrals avoids that.
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2.4 Standard parametrizations

The simplest 
urve to parametrize is a straight line. A line through the origin along a ve
tor 〈a, b〉 
an be

parametrized with

x = at,

y = bt.

If you want a ray (half-line) starting at the origin and travelling in the dire
tion of this ve
tor, then use

the same formulas for x and y but add the restri
tion t ≥ 0 for a 
losed ray (in
luding the endpoint at

the origin) or t > 0 for an open ray (not in
luding that endpoint). For a line segment running along the

length of that ve
tor, use the restri
tion 0 ≤ t ≤ 1 for a 
losed line segment (in
luding both endpoints) or

0 < t < 1 for an open line segment (in
luding neither endpoint). (It s also possible to 
onsider half-open

and half-
losed line segments.) For both rays and line segments, the 
losed version is the usual standard,

although there are times when another version is needed instead.

If the line (or ray or line segment) doesn t go through the origin, then you ll need some point (x1, y1)
that it does go through. Then you 
an use

x = x1 + at,

y = y1 + bt.

Again, without any restri
tion on t, this is a line; but you 
an restri
t t as above to get a ray or a line seg-

ment. Or if you have two points on the line, then you 
an subtra
t them to get the relevant ve
tor. Then

the parametrization be
omes

x = x1 + (x2 − x1)t,

y = y1 + (y2 − y1)t.

All of this works in any number of dimensions; the line through P1 along the ve
tor v has the parametri-

zation

P = P1 + tv,

and the line through P1 and P2 is

P = P1 + t(P2 − P1).

The same restri
tions on t as before will turn these into rays or line segments.

Going ba
k to 2 dimensions, the unit 
ir
le (whose radius is 1 and whose 
entre is at the origin) is

usually parametrized like this:

x = cos t,

y = sin t.

If there are no restri
tions on t, then you are e�e
tively going around and around the 
ir
le forever, 
oun-

ter
lo
kwise (in a 
ounter
lo
kwise 
oordinate system). If you want the parametrization to be one-to-one,

so that every point on the 
ir
le is 
overed exa
tly on
e, then you need a restri
tion on t; the usual one is
0 ≤ t < 2π. It s even more 
ommon to use

0 ≤ t ≤ 2π;

this is almost one-to-one (sin
e only the point (1, 0) is 
overed twi
e, on
e when t = 0 and on
e when t =
2π), and it has a 
ompa
t domain (whi
h is helpful for some things). So this restri
tion is the standard

one for a 
ir
le.

If the radius of the 
ir
le is r, then the parametrization be
omes

x = r cos t,

y = r sin t.

If the 
ir
le is 
entred at (h, k) instead of at the origin, then the parametrization be
omes

x = h+ r cos t,

y = k + r sin t.
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You use the same restri
tions as before to make the parametrization one-to-one or almost one-to-one.

Another useful parametrization is the graph of a fun
tion f . For this, you 
an use x itself as the pa-

rameter:

x = t,

y = f(t).

Sin
e you 
an always 
all the parameter something else instead of t, you 
an even 
all it x:

x = x,

y = f(x).

If you only want the graph of the fun
tion restri
ted to an interval [a, b], then pla
e this restri
tion on the

parameter:

a ≤ t ≤ b

(or a ≤ x ≤ b if you are 
alling the parameter x instead of t). This works more generally any time you

have an equation that you 
an solve for y; if you get a unique solution, then this equation de�nes a fun
-

tion, and the equation y = f(x) in the parametrization above is the equation that you get when you solve

for y.
If you solve for x instead of for y, then you 
an say that x is some fun
tion g of y. This isn t the graph

of that fun
tion exa
tly, sin
e the variables 
ome in the wrong order, but you 
an still parametrize the


urve using y as the parameter:

x = g(t),

y = t.

Again, you 
an put a restri
tion on t if you only want 
ertain values of the independent variable, whi
h is

now y.

2.5 Linear geometry

There are some formulas in Se
tion 11.5 of the textbook that 
an be made simpler by doing arithmeti


with points and ve
tors (instead of just with ve
tors as the book does) or by using the 2-dimensional 
ross

produ
t (instead of only the 3-dimensional 
ross produ
t as the book does).

A parametri
 equation for the line through a point P0 in the dire
tion of a nonzero ve
tor v is

P = P0 + tv,

where t is the parameter and P = (x, y) or P = (x, y, z) is a point on the line. Similarly, a parametri


equation for the line through points P1 and P2 is

P = P1 + t(P2 − P1).

A nonparametri
 equation for the line through P0 in the dire
tion of v in 2 dimensions is

(P − P0)× v = 0.

Similarly, a system of equations for the line through P0 in the dire
tion of v in 3 dimensions is

(P − P0)× v = 0.

(The only di�eren
e is whether the zero on the right-hand side is the s
alar 0 or the ve
tor 0.)

The distan
e from a point S to the line through P0 in the dire
tion of v is

‖(S − P0)× v̂‖ =
‖(S − P0)× v‖

‖v‖ .
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Similarly, the distan
e from S to the line through P1 and P2 is

‖(S − P1)× (P2 − P1)‖
‖P2 − P1‖

.

An equation for the line (in 2 dimensions) or plane (in 3 dimensions) through P0 and perpendi
ular to

a nonzero ve
tor n is

(P − P0) · n = 0.

Finally, the distan
e from S to the line or plane through P0 and perpendi
ular to n is

‖(S − P0) · n̂‖ =
‖(S − P0) · n‖

‖n‖ .

2.6 Derivatives and parametrized 
urves

If x and y are given as fun
tions of t, as happens with a parametrized 
urve in 2 dimensions, then the for-

mulas for derivatives of y with respe
t to x, in terms of the derivatives of x and y with respe
t to t, ought
to fall dire
tly out of the notation. Unfortunately, the usual notation for higher derivatives prevents this.

To see how this should work, 
onsider the �rst derivative. There, the formula is

dy

dx
=

dy/dt

dx/dt
.

That is, simply divide both sides of the fra
tion by dt. Another even sli
ker way to do this would be to

reinterpret the di�erentials as derivatives with respe
t to t; that is, writing a dot above a quantity to indi-


ate di�erentiation with respe
t to t, write
dy

dx
=

ẏ

ẋ
.

But If you try to do this with se
ond derivatives, based on the usual notation for them, then you get a

formula whi
h is wrong :

d2y

dx2
6= ÿ

ẋ2
=

d2y/dt2

(dx/dt)2
.

(Here, I ve written ` 6=' to show that `=' would have been wrong, but it s possible that these may happen

to be equal in 
ertain examples.)

To get the 
orre
t formula instead, we simply need to di�erentiate ẏ/ẋ using the Quotient Rule:

Å
d

dt

ãÅ
ẏ

ẋ

ã
=

ẋdẏ/dt− ẏ dẋ/dt

ẋ2
=

ẋÿ − ẏẍ

ẋ2
.

Dividing by ẋ to 
hange d/dt to d/dx, the se
ond derivative of y with respe
t to x is

(d/dx)
2
y =

ẋÿ − ẏẍ

ẋ3
=

ÿ

ẋ2
− ẏ

ẋ
· ẍ

ẋ2
;

in other words, the na��ve formula is only the �rst term of a two-term expression. This formula is a little

long, but it will 
orre
tly give you the se
ond derivative of y with respe
t to x using the �rst and se
ond

derivatives of x and y with respe
t to t.
There is a symbol for the se
ond derivative using di�erentials that 
an serve as a mnemoni
 for this.

To get it, we again di�erentiate dy/dx using the Quotient Rule, only now using the Quotient Rule for dif-

ferentials rather than the Quotient Rule for derivatives:

d

Å
dy

dx

ã
=

dxd(dy)− dy d(dx)

(dx)2
=

dxd2y − dy d2x

dx2
.
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Dividing by dx to turn d into d/dx, the se
ond derivative of y with respe
t to x is

(d/dx)2y =
dxd2y − dy d2x

dx3
=

d2y

dx2
− dy

dx
· d

2x

dx2
.

As you 
an see, repla
ing `d's with dots throughout gives the formula from the previous paragraph again.

For this reason, I don t like to write d2y/dx2
for the se
ond derivative of y with respe
t to x. Of 
ourse,

nobody wants to write the formula from the previous paragraph when they just want a symbol for the se
-

ond derivative; fortunately, you 
an write (d/dx)
2
y for that. This simply means that you apply the op-

eration d/dx (�nd the di�erential and then divide by dx, or equivalently �nd the derivative with respe
t

to x) twi
e to get the se
ond derivative, whi
h is 
ertainly 
orre
t. You 
an even use this as a mnemoni


for �nding this se
ond derivative: instead of interpeting d/dx as taking the di�erential and then dividing

by dx, interpret it as taking the derivative with respe
t to t and then dividing by ẋ. This is essentially
how the textbook tells you to take the se
ond derivative.

Finally, whether you use either (dxd2y − dy d2x)/dx3
or (d/dx)2y, either way you 
an perform pra
-

ti
al 
a
lulations by interpreting the di�erentials literally. You simply have to write everything in terms

of t, put dt and d2t in where they naturally appear, and �nd that the di�erentials of t 
an
el in the �nal

answer. Alternatively, anti
ipating that the di�erentials of t will 
an
el, you 
an ignore them, whi
h turns

taking di�erentials into taking derivatives with respe
t to t again.
I ll do Example 10.2.2 starting on page 589 of the textbook to illustrate all of these approa
hes. (In

that example, x = t− t2, y = t− t3, and you are asked to �nd (d/dx)
2
y.) First, dx = dt− 2t dt, or ẋ =

dx/dt = 1− 2t. Next, d2x = d2t− 2 dt2 − 2t d2t (whre I ve applied the Produ
t Rule to the se
ond term

of dx), while ẍ = −2. Similarly, dy = dt− 3t2 dt, or ẏ = 1− 3t2. Next, d2y = d2t− 6t dt2 − 3t2 d2t, while
ÿ = −6t.

Now, to �nd (d/dx)y = dy/dx, either dire
tly divide (dt− 3t2 dt)/(dt− 2t dt) and simplify this (by


an
elling fa
tors of dt) to (1− 3t2)/(1− 2t), or instead divide ẏ/ẋ, whi
h again gives (1− 3t2)/(1− 2t).

(This is pretty mu
h the same pro
ess, no matter how you go about it.) Then to �nd (d/dx)
2
y, one way is

to di�erentiate (d/dx)y (found on the previous page) with respe
t to x again. Either take

d
Ä
1−3t2

1−2t

ä

dx
=

2 dt−6t dt+6t2 dt

(1−2t)2

dt− 2t dt

and simplify by 
an
elling fa
tors of dt, or take

(d/dt)
Ä
1−3t2

1−2t

ä

ẋ
=

2−6t+6t2

(1−2t)2

1− 2t
;

either way, you get

(d/dx)
2
y =

2− 6t+ 6t2

(1− 2t)
3 .

This is essentially how the textbook does this problem.

Alternatively, using the formula

(d/dx)
2
y =

dxd2y − dy d2x

dx3
,

we immediately get

(dt− 2t dt)(d2t− 6t dt2 − 3t2 d2t)− (dt− 3t2 dt)(d2t− 2 dt2 − 2t d2t)

(dt− 2t dt)3
,
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whi
h simpli�es drasti
ally to the same answer as above. (Noti
e that there is no need to work out dy/dx
�rst!) Or using

(d/dx)
2
y =

ẋÿ − ẏẍ

ẋ3
,

you immediately get

(1− 2t)(−6t)− (1− 3t2)(−2)

(1− 2t)
3 ,

whi
h simpli�es (somewhat less drasti
ally) to the same answer on
e again. I prefer this last method,

whi
h gets the answer in one step after the preliminary 
al
ulations and doesn t require quite as mu
h al-

gebra to simplify as the 
orresponding method using di�erentials.

2.7 Ar
length

When �nding the length of a 
urve by integration, you are ultimately integrating an expression su
h as√
dx2 + dy2. This parti
ular expression applies in 2 dimensions; in words, it is the prin
ipal square root

of the sum of the square of the di�erential of x and the square of the di�erential of y. An expression like

this, 
ontaining di�erentials, is 
alled a di�erential form; the textbook mentions di�erential forms brie�y

in Se
tion 15.3, but they are really all over the pla
e in multivariable Cal
ulus, sometimes hidden just un-

der the surfa
e, sometimes out in the open without being a
knowledged. I ll try to point them out when-

ever they appear.

This parti
ular di�erential form is 
alled the ar
length element and is traditionally written ds (al-
though that notation is misleading for reasons that I will return to on pages 50&51). A simpler way to

think of ds, whi
h works in any number of dimensions, is as ‖dP‖, the magnitude of the di�erential of the

position P . Remember that dP is a ve
tor when P is a point, so it has a magnitude; in fa
t, dP is the

same as dr (where r = P −O), so you 
an also think of ds as ‖dr‖, the magnitude of the di�erential of the

position ve
tor r. In 2 dimensions, where P = (x, y) and r = 〈x, y〉, dr = dP = 〈dx, dy〉, whose magnitude

is the ar
length element that I wrote down in the previous paragraph. In 3 dimensions, dP = 〈dx, dy, dz〉,
whose magnitude is ds =

√
dx2 + dy2 + dz2.

When working with a parametrized 
urve, every variable (x and y, and z if it exists, whether individ-

ually or 
ombined into P or r) is given as a fun
tion of some parameter t. By di�erentiating these, their

di�erentials 
ome to be expressed using t and dt. The absolute value |dt| will naturally appear in the inte-

grand; but if you set up the integral so that t is in
reasing, then dt is positive, so |dt| = dt. Then you 
an

write ‖dP‖ as ‖v‖ |dt| = ‖v‖ dt, where v = dP/dt = dr/dt is the velo
ity, as given in the textbook. More

expli
itly, this is

ds =

√Å
dx

dt

ã2
+

Å
dy

dt

ã2
dt

(in 2 dimensions), whi
h is also given in the textbook. But while you might integrate this in pra
ti
e to

perform a spe
i�
 
al
ulation, you are most fundamentally integrating a di�erential form in whi
h t does
not appear. This is why the result ultimately does not depend on how you parametrize the 
urve. (In

Chapter 5, I ll dis
uss what it means, in general, to integrate a di�erential form along a 
urve, in
luding

why and to what extent this is independent of any parametrization.)

2.8 Polar 
oordinates

In addition to the usual re
tangular 
oordinates, there are other ways to represent points in R2
or R3

as

pairs or triples of real numbers. Polar 
oordinates are a widely used example.

Polar 
oordinates represent ve
tors more dire
tly than points, so perhaps we should speak �rst of po-

lar 
omponents. Polar 
omponents are based on lengths and angles. We ve dealt before with lengths of

ve
tors and angles between them, but now I ll need an angle for a single ve
tor in 2 dimensions, 
alled

the phase of the ve
tor. Just as a ve
tor s length (or magnitude) is relative to the standard basis ve
tor

i (or j), its phase will be the angle relative to i; a
tually, j matters too, be
ause it s a signed angle in the
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dire
tion of j. That is, if the ve
tor is in the same dire
tion as i, then its phase is 0; if it s in the same di-

re
tion as j, then its phase is π/2; and so on. Turning from i towards j (whi
h is usually oriented to be


ounter
lo
kwise) is a positive phase; turning the other dire
tion is a negative phase.

Expli
itly, given a ve
tor v = 〈a, b〉, the phase ∠v of v is the signed angle from i to v des
ribed on

page 15 in Se
tion 1.11, whi
h is ∠̄(i,v) in the notation of that paragraph. This means that its sine sat-

is�es the equation i× v = ‖i‖ ‖v‖ sin∠v = ‖v‖ sin∠v (sin
e ‖i‖ = 1). Of 
ourse, its 
osine satis�es the
equation i · v = ‖i‖ ‖v‖ cos∠v = ‖v‖ cos∠v. This makes it easy to re
over the usual re
tangular 
ompo-

nents from the magnitude and phase, sin
e i× 〈a, b〉 = b and i · 〈a, b〉 = a. Thus,

v = 〈‖v‖ cos∠v, ‖v‖ sin∠v〉.

A
tually, we 
an generalize this a bit; if r and θ are any real numbers su
h that v = 〈r cos θ, r sin θ〉, then
we say that r and θ (in that order) are polar 
omponents of v. In this 
ase, r = ‖v‖ if r > 0, but you

an also have r = −‖v‖ if r < 0. And θ 
an be any angle su
h that v̂ = 〈cos θ, sin θ〉 (so that θ is ∠v +
2πk for some integer k) if r > 0, but v̂ = 〈− cos θ,− sin θ〉 (so that θ is ∠v + π + 2πk for some k) if r < 0.
It s important that polar 
omponents are not unique; if you are 
hoosing r and θ, then you 
an impose

a 
onvenient restri
tion, su
h as r ≥ 0 (whi
h is almost always imposed when possible) and 0 ≤ θ < 2π
(whi
h is often imposed but less often) or −π < θ ≤ π (whi
h is also fairly 
ommon). However, if you are

given r and θ, then none of these restri
tions is guaranteed to hold. Finally, if v is the zero ve
tor 0 =
〈0, 0〉, then you 
an only have r = 0, but now θ 
an be anything at all!

To des
ribe a ve
tor using its polar 
omponents, there are various te
hniques. Sometimes people sim-

ply write 〈r, θ〉 and make a note somewhere that this is polar instead of re
tangular; this works if you al-

ways use polar 
omponents, but otherwise it s 
onfusing, so I will never do this. Sometimes people write

〈r; θ〉 instead; the semi
olon is supposed to indi
ate polar 
omponents. You should not write ri + θj; if
you want to write it out using operations on the standard basis ve
tors, then it has to be r cos θ i+ r sin θ j
or r(cos θ i+ sin θ j). Another method is to write ∠θ for 〈cos θ, sin θ〉 = cos θ i+ sin θ j; then you 
an write

r∠θ for the ve
tor. This is probably the sli
kest method, but you need to be 
areful with it, sin
e the op-

erator ∠ in ∠θ, where θ is a s
alar, is more or less inverse to the operator ∠ in ∠v, where v is a ve
tor.

(Spe
i�
ally, ∠∠v = v̂, while ∠∠θ = θ if −π < θ ≤ π, and more generally ∠∠θ = θ + 2πk, where k the in-

teger su
h that k ≤ π−θ

2π < k + 1. These are not formulas that you re likely to ever need; just keep in mind

the two inverse meanings of ∠.)

On
e you understand polar 
omponents of ve
tors, polar 
oordinates of points are straightforward.

In re
tangular 
oordinates, the point (x, y) is the origin O plus the ve
tor 〈x, y〉, so now we just write

this ve
tor in polar 
omponents. That is, r and θ (in that order) are polar 
oordinates of a point P if

P = O+ r∠θ. Instead of O+ r∠θ, it s more 
ommon to write (r; θ) (with a semi
olon again); or even just

(r, θ) (with a note that these are polar 
oordinates). More expli
itly, if P = (x, y), then the requirement

for r and θ is

x = r cos θ,

y = r sin θ.

Any numbers r and θ that satisfy these two equations give polar 
oordinates for the point (x, y). (If you
don t learn anything else in this se
tion, learn these two equations.)

Given r and θ, it s easy to 
al
ulate x and y, as above. Going ba
k is tri
kier. If you square the equa-

tions and add them together (using cos2 θ + sin2 θ = 1 to simplify), then you get x2 + y2 = r2. If you re

hoosing r, then you 
an insist on r ≥ 0, and then r =

√
x2 + y2. If you go ba
k to the original two equa-

tions and divide the se
ond by the �rst, then you get y/x = tan θ (at least if x 6= 0), so if you impose −π/2 <
θ < π/2, then θ = atan (y/x). However, you 
annot impose both of these requirements! (For example, if

(x, y) = (−1, 0), then
√
x2 + y2 = 1 and atan (y/x) = 0, but (1 cos 0, 1 sin 0) = (1, 0), not (−1, 0). This

problem will 
ome up whenever x < 0.) So while these equations for r and θ are both well known and ea
h

of them is valid on its own, you 
an t use both of them at on
e. A 
ompatible system of restri
tions, prob-

ably the one most 
ommonly used, is to keep r ≥ 0 but 
ombine it with 0 ≤ θ < 2π. Sometimes people

will also require θ = 0 if r = 0, just to make the solution unique. Then you 
an still use

r =
√
x2 + y2,
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but now θ is a little more 
ompli
ated:

θ =

{
acos (x/r) for y ≥ 0, r > 0,
2π − acos (x/r) for y < 0, r > 0,
0 for r = 0.

Sometimes it s easier to �nd θ using trial and error. Just remember that you 
an make these formulas true

if you want to, as long as you are given x and y and are 
hoosing whi
h r and θ to use with them; but you

don t need to use them, and you 
an

′
t assume them if you re given r and θ by someone else.

2.9 Parametrized 
urves in polar 
oordinates

It s very 
ommon to des
ribe a parametrized 
urve by giving r as a fun
tion of θ. That is, θ is the param-

eter, and you have a fun
tion f su
h that x = f(θ) cos θ and y = f(θ) sin θ. As a parametrized 
urve often


omes with a restri
tion on the parameter, so this often 
omes with the restri
tion that 0 ≤ θ < 2π; even
more 
ommon is 0 ≤ θ ≤ 2π (so that the domain of the parametrization will be 
ompa
t). However, the

restri
tion may be di�erent, or they may be no restri
tion. This is one situation where you 
annot assume

that r ≥ 0! If the fun
tion f always takes nonnegative values, �ne, but if it may take negative values, then

you need to a

ept that.

Although these work like any other parametrized 
urve, it s also possible to develop spe
i�
 formulas

for this situation. These are based on dx = cos θ dr − r sin θ dθ = f ′(θ) cos θ dθ − f(θ) sin θ dθ and dy =
sin θ dr + r cos θ dθ = f ′(θ) sin θ dθ + f(θ) cos θ dθ. Dividing these and 
an
elling dθ,

dy

dx
=

f ′(θ) sin θ + f(θ) cos θ

f ′(θ) cos θ − f(θ) sin θ
.

A parti
ularly important 
ase of this is when r = 0; then substituting zero for f(θ) and 
an
elling f ′(θ),

dy

dx

∣∣∣∣
r=0

= tan θ.

This result 
an be helpful just for graphing. Another fa
t useful for graphing, at least when there are

no restri
tions on θ, is that be
ause extreme values of y 
an happen only when dy is zero or unde�ned, the

highest and lowest points on the graph 
an only o

ur when f ′(θ) sin θ + f(θ) cos θ is zero or unde�ned;

similarly, the leftmost and rightmost points 
an only o

ur when f ′(θ) cos θ − f(θ) sin θ is zero or unde-

�ned.

The ar
length element is

ds =
√
dx2 + dy2 =

√
dr2 + r2 dθ2 =

»
f ′(θ)

2
+ f(θ)

2 |dθ|,

where sin2 θ + cos2 θ = 1 is used to simplify the formula. Therefore, the length of the 
urve given in polar


oordinates by r = f(θ) and α ≤ θ ≤ β is

w β

θ=α

»
f ′(θ)

2
+ f(θ)

2
dθ,

as long as α ≤ β and f is di�erentiable on [α, β].
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2.10 Polar 
oordinates in higher dimensions

The simplest way to use polar 
oordinates in 3 (or more) dimensions is to repla
e x and y with r and θ,
then keep z (and any other re
tangular 
oordinates in higher dimensions). This is 
alled 
ylindri
al 
o-

ordinates. So the equations for 
ylindri
al 
oordinates are

x = r cos θ,

y = r sin θ,

z = z;

noti
e that z does double duty as both a re
tangular 
oordinate and a 
ylindri
al 
oordinate. If v = 〈x, y, z〉,
then we 
an write v = r∠θ + zk, where ∠θ = cos θ i+ sin θ j as before, only now this is intepreted in 3 di-

mensions as ∠θ = 〈cos θ, sin θ, 0〉. Similarly, if P = (x, y, z), then P = O+ r∠θ + zk.
Note that r here is not the magnitude of the ve
tor 〈x, y, z〉 (unles z = 0). Another way to use polar


oordinates in higher dimensions is to use this magnitude, whi
h we 
all ρ (at least in 3 dimensions), and

more angles. Spe
i�
ally, swit
h from (z, r) to (ρ, φ) in exa
tly the same way that polar 
oordinates swit
h

from (x, y) to (r, θ). That is, z = ρ cosφ, and r = ρ sinφ. These are 
alled spheri
al 
oordinates, with
this �nal set of equations:

x = ρ sinφ cos θ,

y = ρ sinφ sin θ,

z = ρ cosφ.

As with ordinary polar 
oordinates, you 
an impose the restri
tion that ρ ≥ 0; if you also have r ≥ 0, then
you 
an impose 0 ≤ φ ≤ π, whi
h is espe
ially 
onvenient. In parti
ular, you 
an 
al
ulate ρ and φ with

ρ =
√
r2 + z2,

φ = acos (z/ρ) for ρ > 0;

the only spe
ial 
ase is when ρ = 0 (in whi
h 
ase φ 
ould be anything, although the usual default is φ = 0
when ρ = 0). But again, if you are given spheri
al 
oordinates from someone else, then you 
an t assume

that they follow these restri
tions! That said, ρ ≥ 0 and 0 ≤ φ ≤ π are imposed extremely often.

While I m on the subje
t, I should also warn you that di�erent dis
iplines and di�erent 
ountries use

di�erent standard symbols for the polar 
oordinates. It s very 
ommon for φ and θ to be swapped 
om-

pletely (in
luding using only φ in 2 dimensions), and r and ρ are also usually swapped, at least in 3 di-

mensions. It s pretty mu
h only North Ameri
an mathemati
ians who use the symbols as they are used

in our textbook and as I have used them here. So wat
h out for this if you go to Europe or take a physi
s


lass!
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3 Fun
tions of several variables

While a parametrized 
urve is given by a point-valued fun
tion, that is a fun
tion that takes a s
alar (a

number) as input and gives a point as output, the main obje
t of study in this 
lass is the reverse: a fun
-

tion that takes a point as input and gives a number as output. Sin
e a point is given by a list of numbers

(its 
oordinates), a fun
tion of this sort 
an also be viewed as taking a list of numbers as input; for this

reason, we 
all it a fun
tion of several variables (the variables in question being those that stand for

the input numbers).

3.1 The hierar
hy of fun
tions and relations

There are many di�erent types of mathemati
al obje
ts that we 
ould study in this 
lass. Some of them

are relation-like obje
ts:

• truth values,

• sets,

• relations,

• ternary relations,

• quaternary relations,

• et
;

some of them are fun
tion-like obje
ts:

• 
onstants,

• fun
tions,

• binary fun
tions,

• ternary fun
tions,

• et
.

As you go along these lists, both the number of variables and the number of dimensions needed for graph-

ing in
rease, as in the following diagram:

truth values

ww♦♦
♦♦
♦

❖❖
❖❖

❖❖

zero dimensions 
onstants

♦♦
♦♦
♦♦

''
❖❖

❖❖
❖

sets

ww♦♦
♦♦
♦

❖❖
❖❖

❖
no variables

one dimension fun
tions

♦♦
♦♦
♦

''
❖❖

❖❖
❖

relations

ww♦♦
♦♦
♦

❖❖
❖❖

❖
one variable

two dimensions binary fun
tions

♦♦
♦♦
♦

''
❖❖

❖❖
❖

ternary relations

ww♦♦
♦♦
♦

❖❖
❖❖

❖
two variables

three dimensions ternary fun
tions

♦♦
♦♦
♦

''
❖❖

❖❖
❖

quaternary relations

ww

three variables

A truth value is either true or false; any statement with no variables in it, su
h as the statement

that 0 < 2, should evaluate to true or false (in this 
ase, true). To indi
ate that you are talking about the

truth value of this statement, rather than asserting the statement itself, you 
an put 
urly bra
es around

it (although there are several other notations used for this); for example, {0 < 2} is the truth value that
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0 is less than 2, whi
h is the true truth value rather than the false one. The graph of the true truth val-

ue is a solid dot, while the graph of the false truth value is a hollow 
ir
le; either way, this takes zero di-

mensions. You 
an also use a variable to give a name to a truth value, so maybe p stands for {0 < 2}; we
won t need to do that in this 
ourse, but you ll do it 
onstantly if you take a 
ourse on Logi
.

A 
onstant is, in this 
lass, a real number, su
h as −2. Any expression with no variables should eval-

uate to a 
onstant (possibly unde�ned), and we use one dimension to graph a 
onstant on a number line.

Again, you 
an use a variable to stand for a 
onstant, so maybe a stands for −2; in other words, a = −2.
A set is, in the simplest 
ase, a set of real numbers. A statement with one variable de�nes a set, su
h

as {x | x < 2}, the set of real numbers that are less than 2. We again use one dimension to graph a set. If

A stands for the set {x | x < 2}, then these two statements mean the same thing:

• x ∈ A, usually pronoun
ed `x in A';
• x < 2.

The �rst of these says that x belongs to the set A, while the se
ond uses the de�nition of A to say pre
ise-

ly what that means about x.
A fun
tion, or unary fun
tion for emphasis, is a rule for taking a number (the input) and using it to


al
ulate a number (the output). An example is (x 7→ x− 2), the rule whi
h subtra
ts 2 from any num-

ber. To graph a fun
tion, we need two dimensions, one for the input and one for the output. If f stands

for the fun
tion (x 7→ x− 2), then these two expressions mean the same thing:

• f(x), usually pronoun
ed `f of x';
• x− 2.

The �rst of these is the value of the fun
tion f at the argument x, while the se
ond uses the de�nition of

f to say pre
isely what that means in terms of x.
A relation, or binary relation for emphasis, is a set of ordered pairs instead of a set of individual

numbers. An example is {x, y | x+ y < 2}. We again use two dimensions to graph a relation. If R stands

for the relation {x, y | x+ y < 2}, then these two statements mean the same thing:

• (x, y) ∈ R;
• x+ y < 2.

The �rst of these says that x and y are related by the relation R, while the se
ond uses the de�nition of R
to say pre
isely what that means in terms of x and y.

A binary fun
tion, or fun
tion of two variables, is a rule for taking an ordered pair of two inputs

and using it to 
al
ulate an output. An example is (x, y 7→ x+ y − 2), the rule whi
h subtra
ts 2 from

the sum of the two inputs. To graph a binary fun
tion, we need three dimensions, two for the inputs and

one for the output. If g stands for the fun
tion (x, y 7→ x+ y − 2), then these two expressions mean the

same thing:

• g(x, y);
• x+ y − 2.

A ternary relation, or relation between three variables, is a set of ordered triples instead of a set of

ordered pairs. An example is {x, y, z | x+ y + z < 2}. We again use three dimensions to graph a ternary

relation.

A ternary fun
tion, or fun
tion of three variables, is a rule for taking an ordered triple of three in-

puts and using it to 
al
ulate an output. An example is (x, y, z 7→ x+ y + z − 2), the rule whi
h sub-

tra
ts 2 from the sum of the three inputs. To graph a ternary fun
tion, we need four dimensions, three for

the inputs and one for the output.

A quaternary relation, or relation between four variables, is a set of ordered quadruples. An exam-

ple is {x1, x2, x3, x4 | x1 + x2 + x3 + x4 < 2}. We again use four dimensions to graph a quaternary rela-

tion.

We 
an 
ontinue with quaternary fun
tions, quinary fun
tions, et
, whi
h are fun
tions of four or

more variables; and we 
an 
ontinue with quinary relations, senary relations, et
, whi
h are relations be-

tween �ve or more variables. (But around this point, most people stop using the `� ary' terms, be
ause few

people 
an remember them.)
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There are various relationships between these di�erent kinds of obje
ts:

• The domain of a fun
tion of n variables is a relation between n variables (the same n variables); giv-

en values of these variables, those values are related by the domain (or equivalently, the point whose


oordinates are those values belongs to the domain) if and only if the fun
tion is de�ned at those val-

ues.

• The range of a fun
tion of any number of variables is a set (a relation with 1 variable, the output);

given a value of that variable (a number), that number belongs to the range if and only if there is

some point in the domain where the value of the fun
tion is that number.

• The graph of a fun
tion of n variables is the graph of a relation between n+ 1 variables (the n input

variables plus the 1 output variable), whi
h 
ontains all of the information in the fun
tion:

gr f = {x1, . . . xn, c | f(x1, . . . , xn) = c}.

For example, a binary fun
tion (a fun
tion of 2 variables) has a relation (a binary relation, a relation be-

tween 2 variables) as its domain, a set (a unary relation, a relation with 1 variable) as its range, and a

ternary relation (a relation between 3 variables) as its graph. In parti
ular, if f(a, b) = c, then (a, b) ∈
dom f (where dom f is the domain of f), c ∈ ran f (where ran f is the range of f), and (a, b, c) ∈ gr f (where

gr f is the relation whose graph is the same as the graph of f). Conversely, if (a, b, c) ∈ gr f , then f(a, b) =
c, so the ternary relation gr f 
ontains all of the information in the binary fun
tion f .

3.2 De�nitions for fun
tions of several variables

In order to form pre
ise de�nitions of various 
on
epts related to fun
tions of several variables, it s handy

to piggyba
k on the de�nitions for fun
tions of one variable. This is not the way that the book writes its

de�nitions, but it s the way that I prefer.

Re
all that a parametrized 
urve, or point-valued fun
tion, takes a number to a point (in however

many dimensions we re dealing with, typi
ally 2 or 3 dimensions). That is, if C is a parametrized 
urve

and t is a real number, then C(t) is a point P = (x, y), P = (x, y, z), et
. Meanwhile, a fun
tion of several

variables (however many variables we re dealing with, typi
ally 2 or 3 variables) takes a point to a num-

ber; that is, if f is a fun
tion of 2 or 3 variables and P = (x, y) or P = (x, y, z) is a point in 2 or 3 dimen-

sions, then f(P ) = f(x, y) or f(P ) = f(x, y, z) is a real number c. If we 
ombine these by 
omposition of

fun
tions, then f ◦ C is an ordinary fun
tion; that is, if t is a real number, then so is (f ◦ C)(t):

(f ◦ C)(t) = f
(
C(t)

)
= f(P ) = c.

From one-variable Cal
ulus, you should know how to de�ne various 
on
epts (
ontinuity, limits, dif-

ferentiability, derivatives, di�erentials) for ordinary fun
tions. It s easy to extend these 
on
epts to ve
tor-

and point-valued fun
tions (parametrized 
urves), sin
e these simply 
onsist of several ordinary fun
tions

(the 
oordinates or 
omponents). So to de�ne these 
on
epts for fun
tions of several variables, we typi
al-

ly use a formula like this:

If f ◦ C has a 
ertain property whenever C does, no matter what C might be (as long as it has

the property), then that s what it means for f to have that property.

This formula doesn t always work perfe
tly; for one thing, we often want to say more than just a Yes/

No property, and it may not be obvious what matters about C or how to extra
t the appropriate informa-

tion from the 
omposites. Besides that, even when this formula would make perfe
t sense, sometimes some

of the ni
e theorems that we would expe
t aren t always true, whi
h means that we should look for a mod-

ifed de�nition that makes the theorems work. (That s what mathemati
ians really want from a de�nition;

they re not handed down from on high but developed for the purpose of getting 
orre
t results.) Neverthe-

less, all of the de�nitions here will be based on something like this formula.
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3.3 Continuity

Continuity follows the general formula pre
isely. A fun
tion f of several variables is 
ontinuous if, when-

ever C is a 
ontinuous parametrized 
urve, the 
omposite f ◦ C is a 
ontinuous fun
tion. (It wouldn t be

fair to expe
t f ◦ C to be 
ontinuous unless C is 
ontinuous as well as f , but if both C and f are 
ontinu-

ous, then their 
omposite ought to be as well.)

Sometimes we want to look at 
ontinuity in more detail; in general, to say that a fun
tion is 
ontin-

uous really means that it s 
ontinuous at every number in its domain. So for a fun
tion of several vari-

ables, we want to talk about 
ontinuity at parti
ular points in its domain. A fun
tion f is 
ontinuous

at a point P0 in the domain of f if, whenever C is a parametrized 
urve and t0 is a number su
h that

C(t0) = P0 and C is 
ontinuous at t0, then f ◦ C is also 
ontinuous at t0. Again, it wouldn t be fair to de-

mand more than this if we re only asking f to be 
ontinuous at P0.

An equivalent de�nition is to say that f is 
ontinuous at P0 if f is de�ned at P0 and, for every posi-

tive number ǫ, there is some positive number δ su
h that, whenever ‖P − P0‖ < δ and f is de�ned at P ,
then |f(P )− f(P0)| < ǫ. This is essentially how it is de�ned in the textbook. However, this ǫ-δ stu� is

rather less fun to work with. (Ultimately, you have to say something like this some time, but I prefer to

say it on
e, when giving the �rst de�nition in one-variable Cal
ulus, and then never again.)

Any fun
tion with a formula that is built out of the 
oordinate variables using only the usual opera-

tions is 
ontinuous wherever it is de�ned. (To be de�nite, the usual operations are addition, subtra
tion,

multipli
ation, division, taking opposites, taking re
ipro
als, taking absolute values, raising to powers with


onstant exponents and/or positive bases, extra
ting roots with 
onstant indexes and/or positive radi-


ands, logarithms, the six trigonometri
 operations, and the six inverse trigonometri
 operations. Some

notable operations not on this list are pie
ewise de�nitions and powers where the exponent varies and the

base may be zero or negative.)

To prove this, you use the 
ontinuity of ea
h 
omponent of a 
ontinuous parameterized 
urve and the

one-variable theorem that any fun
tion built out of 
ontinuous fun
tions using these operations is 
ontin-

uous. For example, if f and g are 
ontinuous at P0 and I want to prove that f + g is 
ontinuous at P0,


onsider a parametrized 
urve C and a number t0 su
h that C(t0) = P0 and C is 
ontinuous at t0; by de�-

nition, f + g is 
ontinuous at P0 if, for ea
h su
h C and t0, (f + g) ◦ C is 
ontinuous at t0. Sin
e f is 
on-

tinuous at P0, this means (by de�nition) that f ◦ C is 
ontinuous at t0; similarly, sin
e g is 
ontinuous at

P0, this means that g ◦ C is 
ontinuous at t0. By a theorem in one-variable Cal
ulus, sin
e f ◦ C and g ◦ C
are both 
ontinuous at t0, so is their sum (f ◦ C) + (g ◦ C). But (f ◦ C) + (g ◦ C) is the same fun
tion as

(f + g) ◦ C, sin
e they do the same thing to any input t:

(
(f ◦ C) + (g ◦C)

)
(t) = (f ◦ C)(t) + (g ◦ C)(t) = f

(
C(t)

)
+ g

(
C(t)

)
;

(
(f + g) ◦ C

)
(t) = (f + g)

(
C(t)

)
= f

(
C(t)

)
+ g

(
C(t)

)
.

Therefore, (f + g) ◦ C is 
ontinuous at t0. Sin
e this argument works for any relevant C and t0, this proves
that f + g is 
ontinuous at P0, as desired. (Similar arguments work for all of the other operations.)

3.4 Limits

To keep things simple, we ll only look at �nite limits approa
hing a �nite value; none of our limits will in-

volve in�nity in any role. (Things will be
ome more 
ompli
ated in another way shortly!)

There is a te
hni
ality about limits that s often ignored in one-variable Cal
ulus, whi
h is that the ex-

pression whose limit you re taking must be de�ned at numbers arbitrarily 
lose to the number that the

variable is approa
hing. It s often treated as a big deal that the fun
tion doesn t have to be de�ned at

that number pre
isely, whi
h is 
ertainly true and important, but it still has to be de�ned near that num-

ber. For example (and assuming that we re only working with real numbers), you 
an t talk about the lim-

it of

√
t as t → −1, be
ause t 
an t get very 
lose to −1 while

√
t is de�ned. On the other hand, it s �ne

to talk about the limit as t → 0, be
ause even though

√
t is unde�ned when t < 0, still

√
t is de�ned when

t > 0, whi
h allows t to get arbitrarily 
lose to 0. (But on the other other hand, you 
an t talk about the

limit as t → 0−, be
ause now this requires t < 0, whi
h leaves

√
t unde�ned again.)
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A number t0 is a limit point of a set D if it makes sense to talk about a fun
tion de�ned on D as

having a limit approa
hing t0, in other words if there exists a fun
tion whose domain is D (a 
onstant

fun
tion will do) that has a limit approa
hing t0. (The term `limit point' is traditional even in 1 dimen-

sion, even though I would normally 
all t0 a number rather than a point.) This is equivalent to saying

that there are numbers in D (other than possibly t0 itself) that are arbitrarily 
lose to t0, in other words

if, given any positive distan
e δ > 0, there is at least some number t in the set D su
h that 0 < |t− t0| < δ.
(But I prefer to think of the de�nition that has no δ or ǫ in it.)

Keeping this te
hni
ality in mind, the limit approa
hing a point P0 of a fun
tion f of several vari-

ables (whi
h in symbols we 
an write as

lim
P→P0

f(P ),

that is

lim
(x,y)→P0

f(x, y)

in 2 dimensions or

lim
(x,y,z)→P0

f(x, y, z)

in 3 dimensions) is the unique number L (if this exists) su
h that, whenever C is a parametrized 
urve and

t0 is a number, if C(t) = P0 when and only when t = t0, and if C is 
ontinuous at t0, and if t0 is a limit

point of the domain of f ◦ C, then L is the limit of f ◦ C approa
hing t0. In other words (ignoring the �ne

print),

lim
P→P0

f(P ) = L

if

lim
t→t0

f
(
C(t)

)
= L

whenever

lim
t→t0

C(t) = P0.

The point of all of that is this: the limit of one of these 
omposites is basi
ally the limit of the fun
-

tion along a parti
ular 
urve. If the fun
tion is unde�ned along the 
urve, then we don t expe
t its limit

to exist, and this is what the 
lause about limit points takes 
are of. We also don t want to worry about

f(P0) itself, sin
e f might not be 
ontinuous at P0, whi
h is why C(t) is not allowed to be P0 ex
ept when

t = t0. So we re only looking at 
ertain 
urves that are appropriate to the problem. Then, in order for the

limit to exist overall, the limit must exist along ea
h appropriate 
urve and be the same along all of them.

If for any appropriate 
urve, there is no limit along that 
urve, then the limit overall does not ex-

ist. Besides that, if there are two appropriate 
urves su
h that the limits along them are di�erent, then

again the limit does not exist overall. It is in this way that one generally proves that a limit does not ex-

ist, when it doesn t. When the limit does exist, however, then you usually need to �nd a general argument

to show that it does and what it is, be
ause you 
an t a
tually 
he
k every individual 
urve. Fortunately,

we have a theorem that

lim
P→P0

f(P ) = f(P0)

whenever f is 
ontinuous at P0 and P0 is a limit point of dom f , as in one-variable Cal
ulus.

One often talks about limits with restri
tions on the manner of approa
hing the point. For example,

instead of saying (x, y) approa
hes (2, 3), we might say that (x, y) approa
hes (2, 3) while x 6= y. (An ana-

logue in one-variable Cal
ulus is, for example, t → 0−; that is, t → 0 while t < 0.) Te
hni
ally, this is han-

dled by modifying the fun
tion so that it is de�ned only when the given restri
tion is met (so in this ex-

ample, the fun
tion would be unde�ned when x = y). That is,

lim
(x,y)→(2,3)

x 6=y

f(x, y) = lim
(x,y)→(2,3)

(f(x, y) for x 6= y),

where by `f(x, y) for x 6= y' I mean f(x, y) if x 6= y but something unde�ned if x = y.
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3.5 Di�erentiability

The way that di�erentiability �ts in with 
omposition of fun
tions is the 
hain rule

(f ◦ g)′(t) = f ′
(
g(t)

)
g′(t).

Following the general prin
iple, we repla
e g with a parametrized 
urve C, and the values of the deriva-

tives of this (repla
ing g′(t)) are ve
tors. However, the 
omposite is an ordinary fun
tion, so the derivative

of f should multiply by a ve
tor to get a s
alar. The general way to do this is to multiply a ve
tor by a

ve
tor with the dot produ
t, so the derivative of a fun
tion of several variables should also be a ve
tor.

(Sin
e we want this 
on
ept to make sense even when lengths and angles don t apply, this ve
tor is going

to have to be a row ve
tor; see Se
tion 1.8 on pages 11&12.) There are a
tually several sorts of derivatives

in higher dimensions, and we ll 
ome ba
k to this subje
t in Chapter 4; but the one whi
h is a ve
tor will

provide the de�nition of di�erentiability.

So, we say that the fun
tion f is di�erentiable at some point P0 if there exists a (row) ve
tor v su
h

that, whenever C is a parametrized 
urve and t0 is a number su
h that C(t0) = P0 and C is di�erentiable

at t0, then f ◦ C is also di�erentiable at t0 and furthermore (f ◦ C)
′
(t0) = v · C′(t0). If f is di�erentiable

at every point P0 in its domain, then f is simply di�erentiable.

This ve
tor v is 
alled the gradient of f at P0 and may be written as ∇f(P0) (although f ′(P0) would
make a lot of sense), so the basi
 rule is

(f ◦ C)′(t) = ∇f
(
C(t)

)
· C′(t).

3.6 Higher di�erentiability

Where a fun
tion f is di�erentiable, the 
omponents of its gradients de�ne some more fun
tions, 
alled

the partial derivatives of f . (We will do more with these partial derivatives in Chapter 4.) Wherever

the partial derivatives are themselves 
ontinuous, the original fun
tion is 
ontinuously di�erentiable.

Where the partial derivatives are themselves di�erentiable, the original fun
tion is twi
e di�erentiable.

Where the partial derivatives are 
ontinuously di�erentiable, the original fun
tion is twi
e 
ontinuously

di�erentiable. Et
 et
 et
. (As in one-variable Cal
ulus, there is a theorem that a di�erentiable fun
tion

must be 
ontinuous, so a twi
e-di�erentiable fun
tion must be 
ontinuously di�erentiable, et
.)

Where this goes on forever, the fun
tion is in�nitely di�erentiable: it is di�erentiable, its partial

derivatives are di�erentiable, their partial derivatives are di�erentiable, et
. Any fun
tion built out of the

usual operations is in�nitely di�erentiable ex
ept at 
ertain ex
eptional pla
es where a derivative fails to

exist, su
h as when taking the absolute value or square root of zero. But to prove this, it s best to look at

how to 
al
ulate the derivatives, whi
h I ll get to next.
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4 Di�erentiation and di�erential forms

Di�erential forms are, broadly speaking, expressions that may have di�erentials in them. They have many

uses in modern s
ien
e and engineering, even though they are not traditionally 
overed expli
itly in math


lass. They are 
overed somewhat, however, and they are there whenever you di�erentiate or integrate,

even if you don t re
ognize them. They are espe
ially prominent in multivariable Cal
ulus, and I want to

bring them to your attention; you ll �nd that symbols that otherwise seem meaningless or merely mnemon-

i
 
an be understood literally (sometimes with slight 
hanges) as di�erential forms.

4.1 Examples

The most basi
 examples of di�erential forms are di�erentials su
h as dx and dy. In general, if u is any

quantity that might 
hange, then du is intended to be a related quantity whose value is an in�nitely small


hange in u, or rather the amount by whi
h the value of u 
hanges when an in�nitely small (or arbitrarily

small) 
hange is made. (I will make this pre
ise in Se
tion 4.6 on pages 39&40.)

Besides the di�erentials themselves, di�erential forms 
an be 
onstru
ted by applying arithmeti
 oper-

ations, so dx+ dy, dxdy, and
√
dx are all di�erential forms. In all of these expressions, we adopt an order

of operations in whi
h the di�erential operator d is applied before any arithmeti
 operator; for example,

dx2
means (dx)

2
, not d(x2) (whi
h is du when u = x2

and turns out to equal 2xdx). Additionally, we 
an
in
lude ordinary quantities in these expressions, so x+ dx, 3 dx+ x2 dy + ey dz, and x ln (y/dz) are also
di�erential forms. We 
an also use di�erentials of di�erentials, su
h as d2x (whi
h means d(dx), the dif-
ferential of dx), although we won t need su
h higher-order di�erentials in this 
ourse. Besides all of this,

any ordinary expression 
ounts as a di�erential form in a degenerate way; thus, x, y2, and 2xy3 are also

di�erential forms (of order zero).

Some di�erential forms are more useful than others. Of those listed above, besides the di�erentials

themselves and the ones of order 0 (the ordinary quantities with no di�erentials at all), the ones most

likely to appear in a real problem are dx+ dy and 3 dx+ x2 dy + ey dz. These 
onsist of any number of

terms, ea
h of whi
h is the produ
t of an ordinary quantity (possibly the 
onstant 1) and the di�erential

of an ordinary quantity. Di�erential forms with this property are most 
ommonly found in pra
ti
e. We

will use other di�erential forms, su
h as 3x |dy| and
√
dx2 + dy2; however, you might be able to see how

even these forms are di�erential of degree 1 in a sense similar to the degree of a polynomial.

All of the examples so far are di�erential forms of rank 1; there are also di�erential forms of higher

rank, su
h as dx ∧ dy, whi
h are written using a new operation, the wedge produ
t. We will not use these

until later, starting in Chapter 6; this 
hapter note is only about di�erential forms of rank 1, or 1-forms

for short. (Ordinary quantities 
ount as rank 0, or 0-forms.)

4.2 Evaluating di�erential forms

In this 
lass, we generally assume that any ordinary quantity (that is any 0-form) is a fun
tion of 2 or 3
ordinary variables, P = (x, y) or P = (x, y, z). Thus, we evaluate 0-forms by spe
ifying spe
i�
 values for

the variables that 
omprise P . For example, to evaluate u = x2 + xy when x = 2 and y = 3, we may write

u|P=(2,3) = (x2 + xy)|(x,y)=(2,3) = (2)2 + (2)(3) = 10.

To evaluate a di�erential 1-form, however, we need not only a point (a value of P ) but also a ve
tor

(a value of dP = 〈dx, dy〉 or dP = 〈dx, dy, dz〉). So for example, to evaluate α = 3dx+ x2 dy + ey dz when

x = 2, y = 3, z = 4, dx = 0.05, dy = −0.01, and dz = 0, we may write

α|P=(2,3,4),
dP=〈0.05,−0.01,0〉

= (3 dx+ x2 dy + ey dz)| (x,y,z)=(2,3,4),
〈dx,dy,dz〉=〈0.05,−0.01,0〉

= 3(0.05) + (2)
2
(−0.01) + e(3)(0) = 0.11.

(Di�erential forms are often denoted with Greek letters su
h as `α', although they don t have to be.) We

say that α has been evaluated at the point P = (2, 3, 4) along the ve
tor dP = 〈0.05,−0.01, 0〉. (The 
om-

ponents of dP don t need to have small absolute values as in this example, sin
e the de�nition makes sense
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in any 
ase, but in appli
ations that s usually what matters; after all, dP is supposed to be a small 
hange

in position.)

(To evaluate higher-order di�erential forms (those that involve higher-order di�erentials), we need to

spe
ify additional ve
tors su
h as d2P = 〈d2x, d2y, d2z〉, et
. However, we won t need that level of general-

ity in this 
ourse.)

4.3 Di�erential forms as ve
tors

A di�erential form α = M dx+N dy +O dz may be viewed as a dot produ
t α = 〈M,N,O〉 · 〈dx, dy, dz〉 =
V · dP . For example, if α = 3dx+ x2 dy + ey dz, then α = 〈3, x2, ey〉 · dP ; 
onversely, if V = 〈3, x2, ey〉,
then

V · dP = 〈3, x2, ey〉 · 〈dx, dy, dz〉 = 3dx+ x2 dy + ey dz.

(We 
an re
over V from α formally by evaluating α when dP is 〈i, j〉 or 〈i, j,k〉, but there s probably no

need to think about that expli
itly.)

Even in 
ir
umstan
es where it makes no sense to interpret a 
hange in the values of (x, y, z) as a ve
-

tor in the geometri
 sense (with length and dire
tion), in whi
h 
ase dot produ
ts involving them general-

ly have no meaning, it is traditional to write di�erential forms in this way and to fo
us on V rather than

on α as the obje
t of study. In this 
ase, we need to think of V as a row ve
tor. Regardless of whether V

has geometri
 signi�
an
e as a ve
tor, it 
an be helpful to visualize it as one.

When 
al
ulations with a row ve
tor need to be performed, ultimately it is the di�erential form α =
V · dP that matters. It s more 
ommon to see V · dr, where as usual the ve
tor r = P −O (where O is

(0, 0) or (0, 0, 0)) satis�es dr = dP . Sometimes V · dr is even regarded as merely a mnemoni
 notation (es-

pe
ially in the 
ontext of de�ning integrals su
h as those in Se
tion 15.2 of the textbook), but it 
an be

taken literally, just as dy/dx (whi
h is also sometimes regarded as merely mnemoni
) 
an be taken literal-

ly as the result of a division of di�erentials. In any 
ase, people do write V · dr (even in the textbook), so

it 
an be ni
e to know what it means!

In the textbook, they also sometimes write dr = Tds, where ds (whi
h is not really the di�erential

of anything in spa
e as a whole) is the magnitude ds = |dr| and T = d̂r, the unit ve
tor in the dire
tion

of dr. This is sometimes useful when thinking about things geometri
ally, but it s not ne
essary for pur-

poses of 
al
ulation. In 2 dimensions, we 
an also take 
ross produ
ts (using the rule 〈a, b〉 × 〈c, d〉 = ad−
bc); for example, if V = 〈3, x2〉, then

V × dr = 〈3, x2〉 × 〈dx, dy〉 = 3dy − x2 dx.

(This requires that 
hanges in x and y make sense as having a geometri
 length even when V is regard-

ed as merely a row ve
tor, so it doesn t 
ome up as often.) If you use ×〈c, d〉 = 〈d,−c〉, so that u× v =
u · ×v, then you 
an write V × dr as V · ×dr; the book sometimes writes this as V · n ds, where ds =

|×dr| = |dr| again, and now n =‘×dr = ×T is the dire
tion perpendi
ular and 
lo
kwise from dr. Again,
sometimes n and ds are useful when thinking about the geometry, but you don t need them for doing 
al-


ulations.

This is all espe
ially 
ommon when V is the output of a ve
tor �eld, that is a ve
tor-valued fun
tion

of several variables. For example, if F(x, y) = 〈3, x2〉, then

F(x, y) · dr = 〈3, x2〉 · 〈dx, dy〉 = 3dx+ x2 dy,

and

F(x, y)× dr = 〈3, x2〉 × 〈dx, dy〉 = 3dy − x2 dx.

So in Se
tion 15.2 of the textbook, whi
h is really about integrating di�erential 1-forms along 
urves, the

book spends most of its time talking about integrating ve
tor �elds along 
urves (and o

asionally in-

tegrating them a
ross 
urves in 2 dimensions). What s really going on is that you integrate the ve
tor

�eld F by integrating one of the two di�erential forms above (usually the �rst one). But even if you re not

doing integrals (whi
h we will not be doing for a while), the relationship between ve
tor �elds and di�er-

ential forms is helpful for geometri
 visualization.
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4.4 Di�erentials and the rules of di�erentiation

In one-variable Cal
ulus, one sometimes sees the Chain Rule expressed as

dy

dx
=

dy

du
· du
dx

,

but the Chain Rule is a nontrivial fa
t that 
annot be proved by simply 
an
elling fa
tors. I prefer to

state the Chain Rule as

d
(
f(u)

)
= f ′(u) du.

the point is that the same fun
tion f ′
appears regardless of whi
h argument u we use.

Even this is more abstra
t than how the Chain Rule is applied. For example, suppose that you have

dis
overed (say from the de�nition as a limit) that the derivative of f(x) = sinx is f ′(x) = cosx. Sin
e

f ′(x) may be de�ned as

d
(
f(x)

)

dx
, this derivative 
an be expressed in di�erential form without even both-

ering to name the fun
tions involved:

d(sinx) = cosxdx.

On
e you know this, you know something even more general:

d(sinu) = cosu du

for any other di�erentiable quantity u; the Chain Rule is the power to derive this equation from the previ-

ous one. Thus, using u = x2
(to 
ontinue the example),

d
(
sin (x2)

)
= cos (x2) d(x2) = cos (x2)(2xdx) = 2x cos (x2) dx.

You may now divide both sides of this equation by dx if you wish, but the basi
 
al
ulation involves only

rules for di�erentials.

For the re
ord, here are the rules for di�erentiation that you should already know, expressed using

di�erentials:

• The Constant Rule: d(K) = 0 if K is 
onstant.

• The Sum Rule: d(u+ v) = du+ dv.
• The Translate Rule: d(u+ C) = du if C is 
onstant.

• The Di�eren
e Rule: d(u− v) = du− dv.
• The Produ
t Rule: d(uv) = v du + u dv.
• The Multiple Rule: d(ku) = k du if k is 
onstant.

• The Quotient Rule: d

Å
u

v

ã
=

v du − u dv

v2
.

• The Power Rule: d(un) = nun−1 du if n is 
onstant.

• The Exponentiation Rule: d(expu) = expu du (where expu means eu).

• The Logarithm Rule: d(lnu) =
du

u
.

• The Sine Rule: d(sinu) = cosu du.
• The Cosine Rule: d(cosu) = − sinu du.
• The Tangent Rule: d(tanu) = sec2 u du.
• The Cotangent Rule: d(cotu) = − csc2 u du.
• The Se
ant Rule: d(secu) = tanu secu du.
• The Cose
ant Rule: d(cscu) = − cotu cscu du.

• The Ar
sine Rule: d(asinu) =
du√
1− u2

(where asinu means sin−1 u).

• The Ar

osine Rule: d(acosu) = − du√
1− u2

.
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• The Ar
tangent Rule: d(atanu) =
du

u2 + 1
.

• The Ar

otangent Rule: d(acotu) = − du

u2 + 1
.

• The Ar
se
ant Rule: d(asecu) =
du

|u|
√
u2 − 1

.

• The Ar

ose
ant Rule: d(acscu) = − du

|u|
√
u2 − 1

.

• The Chain Rule: d(f(u)) = f ′(u) du if f is a fun
tion of one variable that s di�erentiable at u.

• The First Fundamental Theorem of Cal
ulus: d
Äw v

t=u
f(t) dt

ä
= f(v) dv − f(u) du if f is a fun
tion of

one variable that s 
ontinuous between u and v.

(The last one might not be familiar to you in su
h a general form, but it 
an be handy.)

Noti
e that every one of the rules above turns the di�erential on the left into a sum of terms (possibly

only one term, or none in the 
ase of the Constant Rule), ea
h of whi
h is an ordinary expression multi-

plied by a di�erential (or something algebrai
ally equivalent to this). This is a kind of di�erential form;

more pre
isely, these are linear di�erential 1-forms (whi
h are also 
alled exterior di�erential 1-forms).

Here is an example of how to use the rules, step by step, to �nd a di�erential. Spe
i�
ally, I ll �nd the

di�erential of x2y + sin (z2). (In one-variable Cal
ulus, you might 
onsider this if x, y, and z all happen to

be fun
tions of some other variable t; but in multivariable Cal
ulus, the same 
al
ulation will apply even

when the variables x, y, and z are all independent.)

d
(
x2y + sin (z2)

)
= d(x2y) + d

(
sin (z2)

)

= y d(x2) + x2 dy + cos (z2) d(z2)

= y(2x2−1 dx) + x2 dy + cos (z2)(2z2−1 dz)

= 2xy dx+ x2 dy + 2z cos (z2) dz.

Here I ve used, in turn, the sum rule, the produ
t and sine rules (one in one term and the other in the oth-

er term), the power rule (in two pla
es), and �nally some algebra to simplify. Of 
ourse, you 
an usually

do this mu
h faster; with pra
ti
e, you 
an jump immediately to the se
ond-to-last line by applying the

next rule whenever one rule results in a di�erential; then you only need one more step to simplify it alge-

brai
ally. Often you 
an even do some of the algebra in your head immediately (like simplifying x2−1
to x,

so that d(x2) immediately be
omes 2xdx).

4.5 Partial derivatives

If f(x, y, z) (for example) 
an be expressed using the usual operations (and possibly even if it 
annot),

then its di�erential will 
ome out as

d
(
f(x, y, z)

)
= f1(x, y, z) dx+ f2(x, y, z) dy + f3(x, y, z) dz

for some fun
tions f1, f2, and f3. These fun
tions are the partial derivatives of f . Sin
e subs
ripts 
an
be used for many things, a better notation for f1, f2, and f3 is D1f , D2f , and D3f (respe
tively); 
om-

pare the notation Df for f ′
that is sometimes used in single-variable Cal
ulus. For example, if f(x, y, z) =

x2y + sin (z2), then

d
(
f(x, y, z)

)
= d

(
x2y + sin (z2)

)
= 2xy dx+ x2 dy + 2z cos (z2) dz

(as I 
al
luated earlier), so

D1f(x, y, z) = 2xy,

D2f(x, y, z) = x2
, and

D3f(x, y, z) = 2z cos (z2).
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If instead we write u for f(x, y, z), then we have a di�erent notation for the 
oe�
ients on the di�er-

entials:

du =

Å
∂u

∂x

ã

y,z

dx+

Å
∂u

∂y

ã

x,z

dy +

Å
∂u

∂z

ã

x,y

dz.

(The symbol `∂' is a variation on the lower
ase Greek Delta, `δ'. It is usually not pronoun
ed dire
tly; in-

stead, you read the entire expression as des
ribed below.) So for example, if u = x2y + sin (z2), then

du = d
(
x2y + sin (z2)

)
= 2xy dx+ x2 dy + 2z cos (z2) dz

again, so Å
∂u

∂x

ã

y,z

= 2xy,

Å
∂u

∂y

ã

x,z

= x2
, and

Å
∂u

∂z

ã

x,y

= 2z cos (z2).

This

Å
∂u

∂x

ã

y,z

is the partial derivative of u with respe
t to x, �xing y and z, whi
h tells you how mu
h

u 
hanges relative to the 
hange in x as long as y and z remain the same. All of the information in this

notation is ne
essary to avoid ambiguity, but in pra
ti
e people usually write simply

∂u

∂x
, 
all this simply

the partial derivative of u with respe
t to x, and expe
t you to guess from 
ontext what other variables

are remaining �xed.

Of 
ourse, people also mix notation for f with notation for u, writing Dxf , fx,
∂f

∂x
, and so on, as well

as ux, u1, D1u, and so on. Te
hni
ally, notation with numbers makes sense only when applied to the name

of a fun
tion, be
ause the arguments of that fun
tion 
ome in a spe
i�
 order; while notation referring to

the variables used does not make sense when applied to the name of a fun
tion, sin
e one 
ould use any

variables as the arguments of the fun
tion (although it does make sense when applied to an expression

su
h as f(x, y, z), in whi
h these variables have been spe
i�ed). In pra
ti
e, however, people usually use

the variables x, y, z in that order; then there is no 
onfusion.

4.6 De�ning di�erentials

Re
all from Se
tion 3.5 on page 34 that the fun
tion f is di�erentiable at the point P0 if there exists

a row ve
tor ∇f(P0) su
h that, for every di�erentiable parametrized 
urve C and real number t0, if C(t0)
exists and equals P0, then the 
omposite fun
tion f ◦ C is di�erentiable at t0 and furthermore (f ◦ C)′(t0) =
∇f(P0) · C′(t0). This makes ∇f a ve
tor �eld, 
alled the gradient of f , that is de�ned wherever f is dif-

ferentiable. (The symbol `∇' is variously pronoun
ed `Atled', `Nabla', and `Del'; people also write grad f
for ∇f .)

If u = f(P ) and f is di�erentiable, then we write

du = ∇f(P ) · dP = ∇f(P ) · dr,

where r is P −O (P minus the origin), as usual. If you think of ∇f as a derivative of f , then this is sim-

ply taking the Chain Rule as a de�nition. There are two good things about this de�nition of du. First of
all, all of the usual rules of di�erentiation are a
tually true of it; be
ause the de�nition ultimately refers to

ordinary fun
tions, we 
an prove ea
h rule in the list on pages 37&38 by using the 
orresponding result for

ordinary fun
tions. The other good thing about this de�nition is that when we evaluate a di�erential at a

given point and ve
tor, then the result is one of the derivatives (f ◦ C)′(t0) that appear in the de�nition of

di�erentiability.
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Spe
i�
ally, �xing a point P0 and a ve
tor v0, let C(t) = P0 + tv0; then C is a di�erentiable 
urve

with C(0) = P0 and C′(0) = v0, so

du|P=P0,
dP=v0

= ∇f(P0) · v0 = ∇f
(
C(0)

)
· C′(0) = (f ◦ C)

′
(0)

when u = f(P ). If v0 happens to be a unit ve
tor (a dire
tion), then ∇f(P0) · v0 is 
alled the dire
tional

derivative of f at P0 in the dire
tion of v0. In general, the dire
tional derivative in the dire
tion of v0 is

∇f(P0) · v̂0 (where v̂ = v/|v| is the unit ve
tor in the dire
tion of v); however, be 
areful, be
ause some

people use the term `dire
tional derivative' for ∇f(P0) · v0 in the general 
ase (sin
e it s important but

there is no standard name for it). In parti
ular, the dire
tional derivatives parallel to the 
oordinate axes

�that is ∇f(P0) · i, ∇f(P0) · j, and (in 3 dimensions) ∇f(P0) · k� are simply the partial derivatives of f
at P0.

Be
ause d
(
f(P )

)
= ∇f(P ) · dP = ∇f(P ) · dr, the value of the gradient may also be written as

∇f(P ) = d
(
f(P )

)/
dP = d

(
f(P )

)/
dr (although we 
annot de�ne division by a ve
tor in general). An

even simpler notation for ∇f(P ) would be f ′(P ), but this is traditionally not used, be
ause there are many

notions of derivative of f (su
h as the dire
tional derivatives and the partial derivatives); even though the

gradient is the most general derivative, it is 
ommonly thought that f ′
would be ambiguous in this 
on-

text. (When we start di�erentiating ve
tor �elds in Chapter 8, there will be another reason that it s 
on-

venient to have a symbol ∇ that we 
an manipulate more thoroughly than the tiny ti
k mark on f ′
.)

4.7 Gradients

If f is a fun
tion of (say) 3 variables, then the de�nition of di�erential above states that

d
(
f(x, y, z)

)
= ∇f(x, y, z) · d(x, y, z) = ∇f(x, y, z) · 〈dx, dy, dz〉;

meanwhile, the de�nition of partial derivatives states that

d
(
f(x, y, z)

)
= D1f(x, y, z) dx+D2f(x, y, z) dy +D3f(x, y, z) dz

= 〈D1f(x, y, z),D2f(x, y, z),D3f(x, y, z)〉 · 〈dx, dy, dz〉.

In other words,

∇f(x, y, z) = 〈D1f(x, y, z),D2f(x, y, z),D3f(x, y, z)〉 =
Æ
∂
(
f(x, y, z)

)

∂x
,
∂
(
f(x, y, z)

)

∂y
,
∂
(
f(x, y, z)

)

∂z

∏
.

Put more simply,

∇f = 〈D1f,D2f,D3f〉,

or even

∇ = 〈D1,D2,D3〉.

The gradient has the same information as the di�erential, and the partial derivatives are the 
ompo-

nents of the gradient, so any one of these (the gradient, the partial derivatives, or the di�erential) may

be used to solve any problem. The di�erential is usually the most useful for dire
t 
al
ulation, whi
h is

one reason why I use it heavily. However, if we have a geometri
 notion of length available to allow us to

think of row ve
tors (su
h as the gradient) as the same as 
olumn ve
tors (the usual ones, going between

points), then the gradient is easier to visualize.
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For referen
e, here are a bun
h of relationships between di�erentials, partial derivatives, and gradi-

ents, assuming that u = f(x, y, z):

du =

Å
∂u

∂x

ã

y,z

dx+

Å
∂u

∂y

ã

x,z

dy +

Å
∂u

∂z

ã

x,y

dz;

du = D1f(x, y, z) dx+D2f(x, y, z) dy +D3f(x, y, z) dz;

D1f(x, y, z) =

Å
∂u

∂x

ã

y,z

, D2f(x, y, z) =

Å
∂u

∂y

ã

x,z

, D3f(x, y, z) =

Å
∂u

∂z

ã

x,y

;

∇f(x, y, z) = 〈D1f(x, y, z),D2f(x, y, z),D3f(x, y, z)〉;

∇f(x, y, z) =

ÆÅ
∂u

∂x

ã

y,z

,

Å
∂u

∂y

ã

x,z

,

Å
∂u

∂z

ã

x,y

∏
;

du = ∇f(x, y, z) · 〈dx, dy, dz〉;
du|〈dx,dy,dz〉=v

= ∇f(x, y, z) · v.

4.8 Ja
obian matri
es

If you have m fun
tions of n variables ea
h, or equivalently a fun
tion that takes a point in n dimensions

as input and returns a point in m dimensions as output, then you 
an put their partial derivatives in-

to an array with m rows and n 
olumns, that is an m-by-n matrix (see Se
tion 1.13). For example, if

you have 2 fun
tions of 3 variables ea
h, say u = f(x, y, z) and v = g(x, y, z) (or in other words, (u, v) =
(f, g)(x, y, z)), then the partial derivatives �t into a 2-by-3 matrix

ï
∂u/∂x ∂u/∂y ∂u/∂z
∂v/∂x ∂v/∂y ∂v/∂z

ò
;

we may 
all this matrix d(u, v)/d(x, y, z). You 
an also think of this as the result of applying the matrix

of fun
tions ï
D1f D2f D3f
D1g D2g D3g

ò
,

whi
h may be 
alled D(f, g), to the point (x, y, z). That is, we have d(u, v)/d(x, y, z) = D(f, g)(x, y, z). Or
writing P for (x, y, z), Q for (u, v), and F for (f, g), so that Q = F (P ), we have dQ/dP = DF (P ), where
DF is the same matrix of fun
tions as before. (You 
ould justi�ably write DF (P ) as F ′(P ), but this is not
usually done in multiple dimensions.) In parti
ular:

• If you have an ordinary fun
tion y = f(x), you 
an think of this as a group of only 1 fun
tion of only

1 variable ea
h, so that d(y)/d(x) = D(f)(x) is a 1-by-1 matrix, 
onsisting of a single entry, whi
h is

the usual derivative dy/dx = f ′(x). That is, d(y)/d(x) = [ dy/dx ], and D(f) = [Df ] = [ f ′ ].
• If you have a parametrized 
urve in 3 dimensions, say P = (x, y, z) =

(
f(t), g(t), h(t)

)
, then this is a

group of 3 fun
tions of 1 variable ea
h, so that d(x, y, z)/d(t) = D(f, g, h)(t) is a 3-by-1 matrix, 
on-

sisting of a single 
olumn with 3 entries, whi
h are the 
omponents of the velo
ity ve
tor dP/dt =

〈f ′(t), g′(t), h′(t)〉. That is, d(x, y, z)/d(t) =



dx/dt
dy/dt
dz/dt



. It is for this reason that ordinary ve
tors that

represent 
hange of a point (su
h as velo
ity ve
tors) are sometimes 
alled 
olumn ve
tors.

• If you have a fun
tion of 3 variables, say u = F (x, y, z), then you 
an think of this as a group of 1 fun
-

tion of 3 variables ea
h, so that d(u)/d(x, y, z) = D(F )(x, y, z) is a 1-by-3 matrix, 
onsisting of a sin-

gle row with 3 entries, whi
h are the 
omponents of the gradient ve
tor 〈∂u/∂x, ∂u/∂y, ∂u/∂z〉 =
∇F (x, y, z). That is, d(u)/d(x, y, z) = [ ∂u/∂x ∂u/∂y ∂u/∂z ], and D(F ) = [D1f D2f D3F ].
For this reason, ve
tors that represent 
hange with respe
t to a point, su
h as gradient ve
tors, are

sometimes 
alled row ve
tors.

In this way, Ja
obian matri
es in
lude all of the kinds of derivatives that we have seen before.
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Every form of the Chain Rule in Se
tion 13.4 of the textbook 
an be expressed using matrix multipli-


ation. (See Se
tion 1.13 from the full set of notes again.) Re
all that you 
an multiply an m-by-n matrix

and an n-by-o matrix to get an m-by-o matrix. Then if a point R in m dimensions is a fun
tion of a point

Q in n dimensions, whi
h is itself a fun
tion of a point P in o dimensions, then you 
an multiply the m-

by-n matrix dR/dQ and the n-by-o matrix dQ/dP to obtain the m-by-p matrix dR/dP .
In parti
ular, if you have both a parametrized 
urve (x, y, z) = (f(t), g(t), h(t)) and a multivariable

fun
tion u = F (x, y, z), then 
omposition makes u an ordinary fun
tion of t; spe
i�
ally, u = F
(
f(t), g(t), h(t)

)
=(

F ◦ (f, g, h)
)
(t). Re
all the de�ning property of the gradient from page 34:

(
F ◦ (f, g, h)

)′
(t) = ∇F (f(t), g(t), h(t)) ·

〈f ′(t), g′(t), h′(t)〉; or du/dt = 〈∂u/∂x, ∂u/∂y, ∂u/∂z〉 · 〈dx/dt, dy/dt, dz/dt〉. The same thing 
an be ex-

pressed using matrix multipli
ation as

d(u)

d(t)
=

d(u)

d(x, y, z)

d(x, y, z)

d(t)
,

be
ause a matrix row is mutliplied by a matrix 
olumn using the same method as the dot produ
t.

Even the relationship between derivatives and di�erentials may be expressed using matri
es. In gener-

al, if Q = F (P ), then the 
olumn matrix dQ may be obtained by mutiplying the matrix dQ/dP = DF (P )
by the 
olumn matrix dP . For example, if (u, v) = (f, g)(x, y, z), then the 2-by-1 matrix d(u, v) (a 
ol-

umn ve
tor in 2 dimensions being thought of as a matrix) is the result of multiplying the 2-by-3 matrix

d(u, v)/d(x, y, z) by the 3-by-1 matrix d(x, y, z) (a 
olumn ve
tor in 3 dimensions being thought of as a

matrix). More expli
itly,

ï
du
dv

ò
=

ï
∂u/∂x ∂u/∂y ∂u/∂z
∂v/∂x ∂v/∂y ∂v/∂z

ò

dx
dy
dz



.

If you re only interested in one di�erential at a time, then you really don t need any of this, or any

form of the Chain Rule. For example, in the situation in the previous paragraph, if you only want to know

du, then you 
an reason that

du =
∂u

∂x
dx+

∂u

∂y
dy +

∂u

∂z
dz,

whi
h we ve seen before. And then if x, y, and z are fun
tions of t, then you 
an 
ontinue:

du =
∂u

∂x
dx+

∂u

∂y
dy +

∂u

∂z
dz =

∂u

∂x

dx

dt
dt+

∂u

∂y

dy

dt
dt+

∂u

∂z

dz

dt
dt.

Therefore,

du

dt
=

∂u

∂x

dx

dt
+

∂u

∂y

dy

dt
+

∂u

∂z

dz

dt
.

Every appli
ation of the Chain Rule in Se
tion 13.4 of the textbook 
an also be done in this way, using no

fan
y rules at all. The purpose of the Ja
obian matri
es (and the gradient ve
tors and velo
ity ve
tors, for

that matter) is largely simply to organize the partial derivatives into 
onvenient tables.

4.9 Tangents and normal lines

If f is a fun
tion of 2 (or 3) variables and P0 is a point in 2 (or 3) dimensions, then the level 
urve (or sur-

fa
e) of f through P0 is given by the equation f(P ) = f(P0), where P = (x, y) (or (x, y, z), as usual). (The
fun
tion f and the point P0 have already been �xed, but the point P is allowed to vary, so this is an equa-

tion in our 2 (or 3) variables, as it should be.) If f is di�erentiable at P0 and the gradient of f is nonzero

at P0, then this level 
urve (or surfa
e) has a tangent line (or plane) through P0, given by the equation

∇f(P0) · (P − P0) = 0. Finally, perpendi
ular to this tangent line (or plane), there is a normal line (al-

ways a line!) through P0, with parametrization P = P0 + t∇f(P0) in the parameter t.
Writing u for f(P ), the equation for the level 
urve (or surfa
e) is u = u|P=P0

. Writing ∆u for

f(P +∆P )− f(P ), a quantity that depends on both a point P and a ve
tor ∆P , another equation for
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the level 
urve (or surfa
e) is ∆u|P=P0,
∆P=P−P0

= 0. That is, you take the expression for ∆u, whi
h says how

mu
h u 
hanges between two points, put P0 in for the starting point P , and then put P − P0 in for the

di�eren
e ∆P between the two points. Sin
e the value of u shouldn t 
hange on the level 
urve (or sur-

fa
e), this di�eren
e ∆u should be zero. (Noti
e that the meaning of P 
hanges over the 
ourse of this

substitution; originally it refers to the starting point, whi
h we set to P0, but afterwards it refers to anoth-

er point on the level 
urve (or surfa
e), so we set the displa
ement ∆P between the two points to P − P0.)

The tangent line (or plane) is given by a very similar equation, ex
ept that now we look at how the


urve (or surfa
e) is 
hanging in�nitesimally at P0 and extend this out to arbitrary distan
es. Thus, the

equation ∆u = 0 for the level 
urve (or surfa
e) be
omes du = 0 for the tangent line (or plane). Howev-

er, we re still looking for the values of u in the same pla
e, so the full equation is du|P=P0,
dP=P−P0

= 0. If you

follow the formula for evaluating a di�erential on page 40 in Se
tion 4.6, then you ll see that this means

pre
isely ∇f(P0) · (P − P0) = 0.
For example, if u = xy and P0 = (2, 3), then the level 
urve is xy = (2)(3), or simply xy = 6. (Re-

pla
e x with 2 and y with 3 on the right-hand side.) Alternatively, ∆u = (x+∆x)(y +∆y)− xy = y∆x+
x∆y +∆x∆y, so the level 
urve is (3)(x− 2) + (2)(y − 3) + (x− 2)(y − 3) = 0. (Repla
e x with 2, y
with 3, ∆x with x− 2, and ∆y with y − 3.) This also simpli�es to xy = 6.

That was obviously more work than ne
essary for the level 
urve, but now apply the same te
hnique

to the di�erential to get the tangent line: du = y dx+ xdy, so the tangent line is (3)(x− 2) + (2)(y − 3) =
0. (Repla
e x with 2, y with 3, dx with x− 2, and dy with y − 3.) This simpli�es to 3x+ 2y = 12, and
now we learnt something that we didn t know before.

Be
ause the normal line depends on the geometri
 notion of angle (to tell you what s perpendi
ular

to what), this 
an t be done as sli
kly using only di�erentials. Now we really do want to think of the gra-

dient ve
tor. All the same, sin
e this 
an be read o� of the di�erential so easily, you 
an still start with

du = y dx+ xdy. First, repla
e only x with 2 and y with 3 to get 3 dx+ 2dy, then read o� the gradi-

ent ve
tor 〈3, 2〉. Sin
e we started at the point (2, 3), the parametri
 equation is P = (2, 3) + t〈3, 2〉, or
(x, y) = (3t+ 2, 2t+ 3) in more detail.

None of this (beyond the level 
urve (or surfa
e) itself) works right if the gradient ∇f(P0) is zero
or unde�ned. If the gradient is unde�ned, then of 
ourse we 
an t say anything using it; but if the gradient

is zero, then these equations say that every point belongs to the tangent line (or plane) and only the point

P0 belongs to the normal line. Of 
ourse, that would mean that they re not lines (or a plane and a line)

at all! When the gradient is zero, the truth may be that there is no tangent or that there is a tangent but

it really does 
onsist of everything, or there may be an honest tangent line (or plane) after all; but in any


ase, these formulas won t help you know that!

4.10 Taylor

′
s Theorem in several variables

One version of Taylor s Theorem in one-variable Cal
ulus is

f(a+ h) =
k∑

n=0

1

n!
f (n)(a)hn +

1

k!

w 1

t=0
(1− t)

k
f (k+1)(a+ th)hk+1 dt.

To be more expli
it, here is the statement for the �rst few values of k:

f(a+ h) = f(a) +
w 1

t=0
f ′(a+ th)h dt

= f(a) + f ′(a)h+
w 1

t=0
(1− t)f ′′(a+ th)h2 dt

= f(a) + f ′(a)h+
1

2
f ′′(a)h2 +

1

2

w 1

t=0
(1− t)2f ′′′(a+ th)h3 dt

.

.

.
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Here, a and h are real numbers, k is a whole number, and f is a fun
tion that is 
ontinuously di�eren-

tiable k + 1 times (at least) between a and a+ h. These statements may be proved by repeated appli
a-

tion of integration by parts (and the Fundamental Theorem of Cal
ulus, whi
h is why f (k+1)
must not

only exist but also be 
ontinuous).

To write down the general statement in several variables requires more advan
ed notation than we use

in this 
lass, but I will write down the �rst few statements when f is a fun
tion of 2 variables:

f(a+ h, b+ i) = f(a, b) +
w 1

t=0
D1f(a+ th, b+ ti)h dt+

w 1

t=0
D2f(a+ th, b+ ti)i dt

= f(a, b) + D1f(a, b)h+D2f(a, b)i

+
w 1

t=0
(1− t)D1,1f(a+ th, b+ ti)h2 dt+

w 1

t=0
(1− t)D1,2f(a+ th, b+ ti)hi dt

+
w 1

t=0
(1− t)D2,1f(a+ th, b+ ti)ih dt+

w 1

t=0
(1− t)D2,2f(a+ th, b+ ti)i2 dt

= f(a, b) + D1f(a, b)h+D2f(a, b)i

+
1

2
D1,1f(a, b)h

2 +
1

2
D1,2f(a, b)hi+

1

2
D2,1f(a, b)ih+

1

2
D2,2f(a, b)i

2

+
1

2

w 1

t=0
(1− t)

2
D1,1,1f(a+ th, b+ ti)h3 dt+

1

2

w 1

t=0
(1− t)

2
D1,1,2f(a+ th, b+ ti)h2i dt

+
1

2

w 1

t=0
(1− t)

2
D1,2,1f(a+ th, b+ ti)hih dt+

1

2

w 1

t=0
(1− t)

2
D1,2,2f(a+ th, b+ ti)hi2 dt

+
1

2

w 1

t=0
(1− t)2D2,1,1f(a+ th, b+ ti)ih2 dt+

1

2

w 1

t=0
(1− t)2D2,1,2f(a+ th, b+ ti)ihi dt

+
1

2

w 1

t=0
(1− t)

2
D2,2,1f(a+ th, b+ ti)i2h dt+

1

2

w 1

t=0
(1− t)

2
D2,2,2f(a+ th, b+ ti)i3 dt

.

.

.

These may again be proved by using integration by parts. In fa
t, by doing the integration by parts in

slightly di�erent ways, we 
an rearrange the order of the mixed partial derivatives (su
h as D1,2f and

D2,1f); this both proves the theorem that the mixed partial derivatives are the same in either order (when

they are 
ontinuous) but also allows us to simplify the formulas slightly:

f(a+ h, b+ i) = f(a, b) +
w 1

t=0
D1f(a+ th, b+ ti)h dt+

w 1

t=0
D2f(a+ th, b+ ti)i dt

= f(a, b) + D1f(a, b)h+D2f(a, b)i+
w 1

t=0
(1− t)D1,1f(a+ th, b+ ti)h2 dt

+ 2
w 1

t=0
(1− t)D1,2f(a+ th, b+ ti)hi dt+

w 1

t=0
(1− t)D2,2f(a+ th, b+ ti)i2 dt

= f(a, b) + D1f(a, b)h+D2f(a, b)i+
1

2
D1,1f(a, b)h

2 +D1,2f(a, b)hi+
1

2
D2,2f(a, b)i

2

+
1

2

w 1

t=0
(1− t)

2
D1,1,1f(a+ th, b+ ti)h3 dt+

3

2

w 1

t=0
(1− t)

2
D1,1,2f(a+ th, b+ ti)h2i dt

+
3

2

w 1

t=0
(1− t)2D1,2,2f(a+ th, b+ ti)hi2 dt+

1

2

w 1

t=0
(1− t)2D2,2,2f(a+ th, b+ ti)i3 dt

.

.

.

However, in my opinion, the pattern is not so 
lear when it s put this way.

For purposes of approximation, it s useless to a
tually work out the integrals that appear here; if you

knew the exa
t value of the derivatives of f at all the points between (a, b) and (a+ h, b+ i), then you


ould probably just evaluate f at (a+ h, b+ i) dire
tly. However, if there is a value M su
h that you know
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that none of the derivatives of f of order k + 1 have an absolute value greater than M at any point be-

tween (a, b) and (a+ h, b+ i), then you 
an leave o� the integrals to get an approximation of f(a+ h, b+ i)
and then use M to get an estimate of the error of this approximation:

f(a+ h, b+ i) ≈ f(a, b), a 
onstant approximation, if f is 
ontinuous;

f(a+ h, b+ i) ≈ f(a, b) + D1f(a, b)h+D2f(a, b)i, a linear approximation, if f is di�erentiable;

f(a+ h, b+ i) ≈ f(a, b) + D1f(a, b)h+D2f(a, b)i+
1

2
D1,1f(a, b)h

2 +D1,2f(a, b)hi+
1

2
D2,2f(a, b)i

2
,

a quadrati
 approximation, if f is twi
e di�erentiable;

.

.

.

with

|f(a+ h, b+ i)− f(a, b)| ≤ M1(|h|+ |i|)
if |D1f | and |D2f | are never greater than M1 between (a, b) and (a+ h, b+ i),

∣∣f(a+ h, b+ i)−
(
f(a, b) + D1f(a, b)h+D2f(a, b)i

)∣∣ ≤ 1

2
M2(|h|+ |i|)2

if |D1,1f |, |D1,2f |, and |D2,2f | are never greater than M2 between (a, b) and (a+ h, b+ i),

∣∣∣∣f(a+ h, b+ i)−
Å
f(a, b) + D1f(a, b)h+D2f(a, b)i+

1

2
D1,1f(a, b)h

2 +D1,2f(a, b)hi+
1

2
D2,2f(a, b)i

2

ã∣∣∣∣

≤ 1

6
M3(|h|+ |i|)3

if |D1,1,1f |, |D1,1,2f |, |D1,2,2f |, and |D2,2,2f | are never greater than M3 between (a, b) and (a+ h, b+ i),
et
.

Using ve
tors, we 
an write the �rst approximation and its error in any number of variables:

f(P0 + v) ≈ f(P0),

|f(P0 + v)− f(P0)| ≤ M1 |v|1,

where |v|1 is the so-
alled 1-norm of v, found by adding up the absolute values of its 
omponents. (The

usual magnitude is then 
alled the 2-norm, be
ause these absolute values are raised to the power of 2 be-

fore they are added and then the prin
ipal root of index 2 is extra
ted; in general, you 
an 
onsider the

p-norm |v|p for any positive real number p, or even other values of p if you re su�
iently 
lever.) We 
an

also write the se
ond approximation and its error using ve
tors:

f(P0 + v) ≈ f(P0) +∇f(P0) · v,
∣∣f(P0 + v)−

(
f(P0) +∇f(P0) · v

)∣∣ ≤ 1

2
M2 |v|21.

The next approximation, however, requires dyadi
s to write down, whi
h are more 
ompli
ated than ve
-

tors; to write down the general 
ase to any order involves a massive generalization of ve
tors 
alled ten-

sors. However, you 
an always write it down in any spe
i�
 dimension by writing a lot of terms a

ord-

ing to the appropriate pattern, as I did on the previous page; there is also a te
hnique, 
alled multi-index

notation, to en
ode these patterns, whi
h you 
an see (for example) on the English Wikipedia arti
le on

Taylor s Theorem (as of today).

It s handy to des
ribe these approximations in terms of di�erentials and di�eren
es. While a di�eren-

tial represents an in�nitesimal (in�nitely small) 
hange, a di�eren
e represents an appre
iable or �nites-

imal (not in�nitely small) 
hange. As P = (x, y) (or (x, y, z) et
) 
hanges from P0 to P0 + v, we say that

the di�eren
e in P is

∆P = (P0 + v)− P0 = v.
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Meanwhile, if u = f(P ), then the di�eren
e in u is

∆u|P=P0,
∆P=v

= f(P0 + v)− f(P0).

Then the 
onstant approximation says

∆u|P=P0,
∆P=v

≈ 0,

while the linear approximation says (more pre
isely)

∆u|P=P0,
∆P=v

≈ du|P=P0,
dP=v

.

So in the end, the linear approximation repla
es di�eren
es with di�erentials. The next (quadrati
) ap-

proximation 
an be written using the se
ond di�erential d2u, and so on, but we won t 
over that in this


lass. The error estimates are ∣∣∣∣∆u|P=P0,
∆P=v

∣∣∣∣ ≤ M1 |v|1

and ∣∣∣∣∆u|P=P0,
∆P=v

− du|P=P0,
dP=v

∣∣∣∣ ≤
1

2
M2 |v|21.

4.11 Optimization

Literally, optimization is making something the best, but we use it in math to mean maximization, whi
h

is making something the biggest. (You 
an imagine that the thing that you re maximizing is a numeri
al

measure of how good the thing that you re optimizing is.) Essentially the same prin
iples apply to min-

imization, whi
h is making something the smallest. (And pessimization is making something the worst,

although people don t use that term very mu
h, be
ause who would want to do that?) A generi
 term for

making something the largest or smallest is extremization.

The key prin
iple of optimization is this:

A quantity u 
an only take a maximum (or minimum) value when its di�erential du is zero or

unde�ned.

If you write u as f(x, y), where f is a �xed di�erentiable fun
tion of (say) 2 variables, and x and y are

quantities whose range of possible values you already understand (typi
ally intervals), then du =

D1f(x, y) dx+D2f(x, y) dy, or equivalently, du = ∂u

∂x
dx+ ∂u

∂y
dy.

So one way that u might 
on
eivably take an extreme value is if either (or both) of its partial deriva-

tives are unde�ned. Another way is if both (not just one) of its partial derivatives are zero. If you 
an

vary x and y smoothly however you please (essentially, if you are in the interior of the domain of f and

you are free to a

ess the entire domain), then these are the only possibilities. However, if you 
annot vary

them smoothly (essentially, if you are on the boundary of the domain of f or if the situation is otherwise


onstrained so that you 
annot a

ess the entire domain of f), then there are more possibilities!

If your 
onstraint (or 
onstraints) 
an be written as an equation g(x, y) = 0 (or really, with any 
on-

stant on the right-hand side), then as long as the gradient ∇g is never zero on the solution set of the 
on-

straint equations, then you 
an use the method of Lagrange multipliers. Here, you set up an equation

∇f(x, y) = λ∇g(x, y), 
ombine this with the equation g(x, y) = 0, and try to solve for x, y, and λ. (Sin
e
a ve
tor equation is equivalent to 2 s
alar equations, this amounts to a system of 3 equations in 3 vari-

ables, so there is hope to solve for it.) If you re working in 3 variables, then you might need two equations

to spe
ify the 
onstraint, in whi
h 
ase there are two fun
tions in the pla
e of g and two Lagrange mul-

tipliers. (But you 
an also have just one g even in 3 dimensions; it s a question of whether the boundary

in question is a surfa
e or a 
urve.) While λ ultimately doesn t matter, the solutions that you get for the

original variables give you additional 
riti
al points to 
he
k for extreme values.

On the other hand, you don t a
tually need Lagrange multipliers! Writing v for g(x, y), if the 
on-
straint is v = 0 (or any 
onstant), then di�erentiate this to get dv = 0. (In fa
t, you 
ould take any equa-

tion and just di�erentiate both sides.) Then if you try to solve the system of equations 
onsisting of du = 0
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and dv = 0 for the di�erentials dx and dy, you should immediately see that dx = 0 and dy = 0 is a solu-

tion. However, if you a
tually go through the steps of solving this as a system of linear equations (whi
h

you 
an always do be
ause di�erentials are always linear in the di�erentials of the independent variables),

you ll �nd that at some point you need to divide by some quantity involving x and y, whi
h is invalid if

that quantity is zero! So, setting whatever you divide by to zero and 
ombining that with the 
onstraint

equation v = 0, you get two equations to solve for the two variables x and y. (With this method, λ never

enters into it.) This will give you the other 
riti
al points to 
he
k for extreme values.

Be 
areful, be
ause u might not have a maximum or minimum value! Assuming that u varies 
on-

tinuously (whi
h it must if Cal
lulus is to be useful at all), then it must have a maximum and minimum

value whenever the domain of the fun
tion (in
luding any 
onstraints) is both 
losed and bounded (whi
h

is 
alled 
ompa
t); this means that if you pass 
ontinuously through the possibilities in any way, then you

are always approa
hing some limiting possibility. However, if the range of possibilities heads o� to in�ni-

ty in some way, then you also have to take a limit to see what value u is approa
hing, whi
h 
an be very

di�
ult to do in more than one dimension. Or if there is a boundary that s not in
luded in the domain,

then you have to take a limit approa
hing that boundary, although in that 
ase you 
an hope that you 
an


he
k the boundary as if it were in
luded, the same way as above. If any su
h limit is larger than every

value that u a
tually rea
hes (whi
h in
ludes the possibility that a limit is ∞), then u has no maximum

value; if any su
h limit is smaller than every value that u a
tually rea
hes (whi
h in
ludes the possibility

that a limit is −∞), then u has no minimum value.

So in the end, you look at these possibilities to optimize u:

• when any partial derivative of u is unde�ned,

• when all partial derivatives of u are zero,

• any boundary possibilities given by a 
onstraint,

• any 
orners (boundaries of the boundaries) given by two 
onstraints,

• any 
orners of 
orners given by three 
onstraints (not possible in only 2 dimensions),

• et
 (in more than 3 dimensions), and

• the limits approa
hing impossible limiting 
ases.

Whi
hever of these has the largest value of u gives you the maximum, and whi
hever has the smallest val-

ue of u gives you the minimum; but if the largest or smallest value is only approa
hed in the limit, then

the maximum or minimum te
hni
ally does not exist. (In this 
ase, it is 
alled a supremum or in�mum

instead.)

Here is a typi
al problem: The hypotenuse of a right triangle (maybe it s a ladder leaning against a

wall) is �xed at 20 feet, but the other two sides of the triangle 
ould be anything. Still, sin
e it s a right

triangle, we know that l2 + h2 = 202, where l and h (length and height) are the lengths of legs of the tri-

angle. (If we think of l and h as independent variables, then this equation is our 
onstraint.) Di�erentiat-

ing this, 2l dl + 2h dh = 0. Now suppose that we want to maximize or minimize the area of this triangle.

Sin
e it s a right triangle, the area is A = 1
2 lh, so dA = 1

2h dl +
1
2 l dh. If this is zero, then

1
2h dl+

1
2 l dh =

0, to go along with the other equation 2l dl + 2h dh = 0.
The equations at this point are linear in the di�erentials (as they always must be), so think of this as

a system of linear equations in the variables dl and dh. There are various methods for solving systems of

linear equations; I ll use the method of addition aka elimination, but any other method should work just

as well. So

1
2h dl +

1
2 l dh = 0 be
omes 2lh dl+ 2l2 dh = 0 (multiplying both sides by 4l), while 2l dl +

2h dh = 0 be
omes 2lh dl+ 2h2 dh = 0 (multiplying both sides by h). Subtra
ting these equations gives

(2l2 − 2h2) dh = 0, so either dh = 0 or l2 = h2
. Now, l and h 
an 
hange freely as long as they re posi-

tive, but we have limiting 
ases: l → 0+ and h → 0+. Sin
e l2 + h2 = 400, we see that l2 → 400, so l → 20,

as h → 0. Similarly, h → 20 as l → 0. In those 
ases, A = 1
2 lh → 0. On the other hand, if l2 = h2

, then

l = h, so l, h = 10
√
2, sin
e l2 + h2 = 400. In that 
ase, A = 1

2 lh = 100.

So the largest area is 100 square feet, and while there is no smallest area, the area 
an get arbitrarily

small with a limit of 0.
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5 Integration on 
urves

Di�erential 1-forms (that is di�erential forms without the wedge produ
t that we will get to in Chapter 6)


an be integrated along 
urves. To a large extent, that is what they are for. Sin
e di�erential forms are

made of di�erentials and the de�nition of the di�erential of an expression (at least the one that I gave in

Se
tion 4.6 earlier) is ultimately about 
urves, this is a very natural operation.

5.1 The de�nition

Like the textbook does for one-variable Cal
ulus, I ll de�ne the Riemann integral as a limit of Riemann

sums, although there are more general notions of integration that 
an handle more expressions. The Rie-

mann integral will be su�
ient for pie
ewise 
ontinuous di�erential forms (those de�ned in one or more

pie
es using 
ontinuous operations applied to 
ontinuous quantities and the di�erentials of 
ontinuously

di�erentiable quantities) along pie
ewise 
ontinuously di�erentiable 
urves (those with parametrizations

de�ned in one or more pie
es using 
ontinuously di�erentiable operations applied to the parameter).

So, suppose that we have a di�erential form α written using the variables P = (x, y, . . .) and their

di�erentials, and a 
urve in the same number of dimensions, given by some parametrization fun
tion C
whose domain is a 
losed interval [a, b]. Then we 
an try to integrate α along the 
urve where P = C(t),
by de�ning the integral w

P=C(t)
α,

or w
C
α

for short.

Given any way of dividing the interval [a, b] into a partition a = t0 ≤ t1 ≤ · · · ≤ tn−1 ≤ tn = b (with
n subintervals) and tagging this partition with n values ck with tk−1 ≤ ck ≤ tk for k from 1 to n (this is

exa
tly the kind of partition 
onsidered in one-variable Cal
ulus, as on pages 304�306 of the textbook),

there is a Riemann sum

n∑

k=1

α|P=C(ck),
dP=C(tk)−C(tk−1)

.

That is, on the kth subinterval, we evaluate the form α at the point through whi
h the 
urve passes at

time ck within that subinterval along the ve
tor from where the 
urve is at the beginning of the subin-

terval to where it is at the end of the subinterval. If we require that the magnitude of this ve
tor be less

than δ and take the limit as δ → 0+, then this limit (if it exists) is the value of the integral. And there is

a theorem that it does exist, at least if α is pie
ewise 
ontinuous and C is pie
ewise 
ontinuously di�er-

entiable (and sometimes otherwise); I don t know a ni
e proof of this dire
tly, but you 
an prove that it

exists be
ause the pra
ti
al 
al
ulation method on page 50 works.

There is now another ni
e theorem, that the value of this integral does not depend on the parametri-

zation of the 
urve, at least not very mu
h. That is, if φ is a fun
tion in the ordinary sense (a real-valued

fun
tion of one real variable), then C ◦ φ is another parametrized 
urve; if φ is one-to-one and in
reasing

(so that we travel along the 
urve in the same dire
tion without repetition) and its range in
ludes the en-

tire domain of C (so that we 
over the entire 
urve), then the theorem is that

r
C
α =

r
C◦φ

α. The proof is

that any Riemann sum for C is also a Riemann sum for C ◦ φ; the same points C(tk) and C(ck) o

ur in
the same order, just at di�erent values of the parameter. So the Riemann integrals, whi
h are the limits of

these Riemann sums, must also be the same.

For this reason, we usually don t spe
ify a parametrized 
urve in the notation at all. Instead, we spe
-

ify an oriented 
urve, whi
h is anything that 
ould be given as a parametrized 
urve, keeping tra
k of

whi
h dire
tion we travel along the 
urve (this is the orientation of the 
urve) but otherwise ignoring the

parametrization.
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5.2 Evaluating integrals along 
urves

The pra
ti
al method of evaluating integrals along 
urves is to pi
k any 
onvenient parametrization (prefer-

ably one that is 
ontinuously di�erentiable) and put everything in terms of that parameter. For example,

to integrate 2xdx+ 3xy dy along the top half of the 
ir
le x2 + y2 = 4, oriented 
ounter
lo
kwise, try the

parametrization where x = 2 cos t, y = 2 sin t, and 0 ≤ t ≤ π. Then dx = −2 sin t dt and dy = 2 cos t dt, so
the value of the integral is

w
x2+y2=4, y≥0

dx≤0

(2xdx+ 3xy dy) =
w π

t=0

(
2(2 cos t)(−2 sin t dt) + 3(2 cos t)(2 sin t)(2 cos t dt)

)

=
w π

t=0
(−8 sin t cos t+ 24 sin t cos2 t) dt = 16.

(You 
an do this last integral with the substitution u = cos t.) I ve des
ribed the 
urve of integration with

an equation (of a 
ir
le) and an inequality (to get the top half only) and oriented it by saying that x is

always de
reasing (so that dx is always negative), but usually people write that all out to the side some-

where, 
all the resulting oriented 
urve C (for example), and write

r
C
(2xdx+ 3xy dy).

The reason why this gives the 
orre
t result is that any Riemann sum for the integral involving t in-
volves almost the same 
al
ulations as a Riemann sum for the integral along the 
urve. The only di�er-

en
e is that the integral involving t looks at the point from within ea
h subinterval to handle the di�er-

entials, whereas the integral of the 
urve looks at the points on ea
h end of the subinterval. But in the

limit, all of these points approa
h ea
h other, and the result is the same. (There is another slight 
ompli-


ation be
ause the integral involving t takes a limit as the 
hange in t goes to 0, while the integral along
the 
urve takes a limit as the magnitude of the 
hange in position goes to 0. However, these are the same

be
ause the parametrization is 
ontinuous. If you 
an 
al
ulate dx and dy at all, then the parametrization

must be di�erentiable and so de�nitely 
ontinuous.)

You should be able to visualize this example geometri
ally well enough to see that the answer would

have to be positive. The term 2xdx should 
ompletely 
an
el, be
ause the right half of the 
urve exa
tly

mirrors the left half, with dx the same on both halves (always negative be
ause of movement to the left)

but x being the opposite on the two halves (�rst positive, then negative). On the other hand, the term

3xy dy will be negative on both sides; while y is always positive (above the horizontal axis), x and dy are

both positive on the right half (right of the verti
al axis and moving upwards) and both negative on the

left half (left of the axis and moving downwards), making for a positive produ
t everywhere.

5.3 Integrating ve
tor �elds

If you are asked to integrate a ve
tor �eld F along an oriented 
urve, then they really want you to inte-

grate the di�erential form F(x, y) · 〈dx, dy〉, or more generally F(P ) · dP , where P is (x, y) or (x, y, z). If
you write r for the ve
tor P −O (where O is the origin (0, 0) or (0, 0, 0)), then dP = dr, and this is the

reason for the traditional notation

r
C
F · dr, whi
h is used in the textbook. (You may also see

r
C
F ·Tds,

where ds is the ds that appears in Se
tion 5.4 on the next page and T is de�ned to be dr/ds. This is usu-
ally 
ompletely pointless; if you see Tds, just think of it as dr.)

For example, to integrate 〈2x, 3xy〉 along the same semi
ir
le as in the previous example (with the

same orientation), you do exa
tly the same integral as in the previous example. This is be
ause

〈2x, 3xy〉 · 〈dx, dy〉 = 2xdx+ 3xy dy,

so w
C
〈2x, 3xy〉 · dr =

w
C
(2xdx+ 3xy dy) = 16

as before. Sin
e the ve
tor 〈2x, 3xy〉 points to the right on the right side and to the left on the left side,

while we move along the 
urve 
onsistently to the left, this suggests that the horizontal 
omponent should


an
el. However, sin
e this ve
tor points upwards where we move upwards along the 
urve (on the right

side) and points downwards where we move downards along the 
urve (on the left side), this suggests a

positive 
ontribution from the verti
al 
omponent. So as in the �rst example, you should expe
t a positive

result even before doing the 
al
ulation.
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5.4 Integrating s
alar �elds

If you are asked to integrate a fun
tion f along a 
urve, then they really want you to integrate the di�er-

ential form f(x, y)
√
dx2 + dy2, or more generally f(P ) |dP |. It s traditional to write ds for |dP | (or |dr|,

whi
h is the same), but it s important that there is no quantity s de�ned everywhere on the 
oordinate

plane that ds is the di�erential of. To emphasize this, you 
an write d̄s; `d̄' is a symbol that some people

use when something is traditionally written with `d' but is not really a di�erential.

As long as the di�erentials dx et
 appear only in d̄s, then the result of the integral is independent

of orientation, be
ause repla
ing dx with −dx (as would happen upon reversing the orientation) doesn t


hange d̄s. For this reason, you 
an integrate a fun
tion on an unoriented 
urve. When parametrizing,

everything will 
ome out using |dt| instead of dt, but as long as the integral involving t has its bounds set
up so that t is in
reasing, then dt is positive and so |dt| = dt, after whi
h you 
an integrate normally.

For example, to integrate f(x, y) = 6x2y on the same semi
ir
le as in the previous examples, you get

d̄s =
√
dx2 + dy2 =

»
(−2 sin t dt)2 + (2 cos t dt)2 =

»
(4 sin2 t+ 4 cos2 t) dt2 =

√
4
√
dt2 = 2 |dt|.

Thus, the integral isw
x2+y2=4, y≥0

6x2y d̄s =
w π

t=0
6(cos t)

2
(sin t)(2 |dt|) =

w π

t=0
12 sin t cos2 t dt = 8.

Sin
e x2y is positive everywhere on this 
urve, you should have expe
ted a positive result.

If for some reason you set the integral up ba
kward, then dt would be negative and so |dt| would be

−dt, and the result would be the same in the end:

w
C
d̄s =

w 0

t=π
12 sin t cos2 t |dt| =

w 0

t=π
12 sin t cos2 t(−dt) = −

w 0

t=π
12 sin t cos2 t dt = −(−8) = 8.

(But it s simpler to always set things up so that the parameter is in
reasing.)

5.5 Pseudooriented 
urves

In 2 dimensions, you ll sometimes be asked to integrate a ve
tor �eld a
ross a 
urve rather than along it

as usual. Although there is no standard notation for this, you 
an write it as as F× dr in analogy with

the usual F · dr. The textbook sometimes writes F · n ds, where n = ×T and dr = Tds, but this just re-
sults in F · ×dr = F× dr.

This is the 2-dimensional 
ross produ
t, so the result is still a s
alar. Te
hni
ally, however, it is a
-

tually a pseudos
alar, be
ause its sign depends on how you orient the plane (
ounter
lo
kwise as is the


onvention, or 
lo
kwise instead). Similarly, spe
ifying a dire
tion a
ross a 
urve really gives the 
urve a

pseudoorientation, be
ause it only de�nes a dire
tion along the 
urve (an orientation) by pi
king a 
on-

vention about how these dire
tions 
orrespond. In pra
ti
e, we orient the plane 
ounter
lo
kwise, meaning

that 
ounter
lo
kwise 
ross produ
ts are positive, the rotation ×v of a ve
tor v is obtained by rotating it


lo
kwise, a dire
tion a
ross a 
urve turns into a dire
tion along it by rotation 
ounter
lo
kwise, and a di-

re
tion along a 
urve turns into a dire
tion a
ross it by rotating 
lo
kwise. But if you 
onsistently did all

of these the other way, then the results of all integrals would be the same.

For example, to integrate 〈2x, 3xy〉 a
ross our semi
ir
le, now pseudooriented upwards, integrate

〈2x, 3xy〉 × 〈dx, dy〉 = 2xdy − 3xy dx,

and use the orientation 
ounter
lo
kwise from upwards, whi
h is leftwards (the same as in �rst example):w
x2+y2=4, y≥0

dy≥0

〈2x, 3xy〉 × dr =
w

x2+y2=4, y≥0
dx≤0

(2xdy − 3xy dx)

=
w π

t=0

(
(2(2 cos t)(2 cos t dt))− 3(2 cos t)(2 sin t)(−2 sin t dt)

)

=
w π

t=0
(8 cos2 t+ 24 sin2 t cos t) dt = 4π.

Sin
e the ve
tor 〈2x, 3xy〉 points to the right where we 
ross the 
urve to the right (on the right side) and

points to the left where we 
ross to the left, this suggests that the horizontal 
omponent should give a pos-

itive result. However, sin
e this ve
tor points upwards on the right side and downwards on the left side,

while we 
ross the 
urve 
onsistently upwards, this suggests that the verti
al 
omponent should 
an
el. So

you should again expe
t a positive result before doing the 
al
ulation.
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5.6 The Fundamental Theorem of Cal
ulus

In one-variable Cal
ulus, the se
ond Fundamental Theorem states that

w b

x=a
f ′(x) dx = f(b)− f(a).

If we write u for the quantity f(x), then its di�erential du is pre
isely the integrand f ′(x) dx, so the Fun-

damental Theorem 
an also be written as w b

a
du = u|ba.

This works just as well when there are several independent variables as when there is just one. Now if u =
f(P ), then du is ∇f(P ) · dr, so w b

P=a
∇f(P ) · dr = f(b)− f(a).

Although this is now a theorem about integrating a gradient along a 
urve, in essen
e it is still just the

ft
, a theorem about integrating di�erentials. This has a massive generalization to higher-rank di�eren-

tial forms, 
alled the Stokes Theorem, whi
h we ll get to in Chapter 8.

A di�erential form is 
alled exa
t if there exists a quantity u su
h that α = du. Similarly, a ve
-

tor �eld F is 
alled 
onservative if there is a s
alar �eld f su
h that F = ∇f . The 
onne
tion between

these is that F is 
onservative if and only if F(P ) · dr is exa
t. (After all, if F = ∇f , then F(P ) · dr =
d
(
f(P )

)
.) An oriented 
urve is 
alled 
losed if its beginning and ending points are the same; one some-

times emphasizes that an integral is along a 
losed 
urve by writing

u
in pla
e of

r
. Then the integral of

an exa
t di�erential form along a 
losed 
urve is zero, be
ause

z
C
α =

w a

a
du = u|aa = u|a − u|a = 0.

Similarly, the integral of a 
onservative ve
tor �eld along a 
losed 
urve is zero. In this 
ase, we 
an use

notation more like that of a de�nite integral in one variable:

w P2

P=P1

α

means the integral of α along any 
urve from P1 to P2. It doesn t matter whi
h 
urve you use; if C1 and C2

are both 
urves like this, then these 
ombine into a 
losed 
urve C1 − C2, in whi
h you start at P1, follow

C1 to P2, then follow C2 ba
kwards (hen
e the minus sign) ba
k to P1. Then

w
C1

α−
w
C2

α =
z
C1−C2

α = 0,

so

r
C1

α =
r
C2

α. (This is still unde�ned if there is no 
urve from P1 to P2 through the domain of α. This

is analogous to the 
ase in one dimension of an integral

r b

x=a
f(x) dx where f is unde�ned somewhere be-

tween a and b. If the unde�ned region is su�
iently small, then this 
an be handled with improper inte-

grals or other methods, but we don t 
onsider that in this 
lass.)

Conversely, if the integral of a di�erential form or of a ve
tor �eld is zero along every 
losed 
urve,

then that di�erential form must be exa
t or that ve
tor �eld must be 
onservative. The reason is that in

this 
ase (and only in this 
ase) we 
an pi
k a point P0 to start from and de�ne a semide�nite integral

u =
w
P=P0

α =
w P

P0

α.

Be
ause α is exa
t, you get the same result no matter whi
h path you use from P0 to P . (Ideally, the do-
main of α should be path-
onne
ted, meaning that there exists a 
urve between any two points. If not,

then you must split the domain into various path-
onne
ted 
omponents and pi
k a point in ea
h.) That

du = α in this 
ase is essentially the multivariable version of the �rst Fundamental Theorem of Cal
ulus.
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Given a di�erential form α, �nding su
h an expression u is a form of inde�nite integration. It s not

pra
ti
al to 
he
k every possible 
urve, of 
ourse, so we need other methods to de
ide if α is exa
t, and

this 
an also help us to �nd u. There are a
tually several methods; one is given in the textbook, essential-

ly reversing the pro
ess of partial di�erentiation with a kind of partial inde�nite integration. (If you try

this method when α is not exa
t, then it will fail.)

If the domain of α is reasonably simple, then it s possible to pi
k a point P0 and write down a general

formula for a parametrized 
urve from P0 to any point P . (For example, you 
ould always use a straight

line segment, as long as these line segments always lie entirely within the domain.) If you try this method

when α is not exa
t, then you may get a result; but when you 
he
k it, then you ll �nd that it s wrong (its

di�erential does not equal α) when α is not exa
t.

It s often possible to tell ahead of time whether α is exa
t. To really explain what s going on here, I ll

need to talk about the exterior di�erential, whi
h is a topi
 that we ll get to in Chapter 8. For now, I ll

des
ribe it in terms of partial derivatives. So, if α = du, then

α =
∂u

∂x
dx+

∂u

∂y
dy + · · · .

(The dots are meant to indi
ate that more terms may appear if there are more than two variables.) As-

suming that u is twi
e di�erentiable, then mixed se
ond partial derivatives are equal:

∂2u

∂x ∂y
=

∂2u

∂y ∂x
.

So if you start with an arbitrary linear di�erential 1-form

α = αx dx+ αy dy + · · · ,

then it 
ould only be exa
t if it is 
losed, meaning that

∂αx

∂y
=

∂αy

∂x

(and similarly for other mixtures of derivatives if there are more than two variables), assuming that it s

di�erentiable in the �rst pla
e. Similarly, a ve
tor �eld

F(x, y, . . .) = F1(x, y, . . .)i+ F2(x, y, . . .)j+ · · ·


an only be 
onservative if it is irrotational, meaning that

D2F1 = D1F2

(and similarly for other mixtures of derivatives if there are more than two variables), assuming that it s

di�erentiable in the �rst pla
e.

Conversely, a 
losed di�erential form or an irrotational ve
tor �eld must be exa
t or 
onservative (re-

spe
tively) if its domain is pre
isely-simply 
onne
ted, whi
h means that any simple 
losed 
urve (one

that doesn t interse
t itself ex
ept where its two endpoints are equal) in the domain of the di�erential form

or the ve
tor �eld is the boundary of a region that lies entirely within that domain. (The domain is simply


onne
ted if it is both path-
onne
ted and pre
isely-simply 
onne
ted. Conversely, it is pre
isely-simply


onne
ted if ea
h of its path-
onne
ted 
omponents is simply 
onne
ted. If you take a 
lass in Topology

su
h as Math 471 at Unl, then you ll learn dozens of spe
i�
 terms like these.) But a full dis
ussion of

the reasons for this must wait until Chapter 8.
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6 Multiple integrals

In multivariable Cal
ulus, we 
an also integrate with respe
t to more than one variable at a time. (But in

pra
ti
e, you usually work out these integrals by treating ea
h variable in turn using the theorems from

Se
tion 6.2 on the next page.)

6.1 Notation

If you have a relation R (between 2 variables), you 
an think of this as a set of ordered pairs, de�ning

a region in the 
oordinate plane; if you also have a fun
tion f of 2 variables, then you 
an try to integrate

f on R. Similarly, if R is relation between 3 variables, then you 
an think of this as a region in 3-dimen-

sional spa
e; if f is now a fun
tion of 3 variables, then you 
an again try to integrate f on R.
These may be written

r
R
f , or

r
(x,y)∈R

f(x, y) (in 2 dimensions) or

r
(x,y,z)∈R

f(x, y, z) (in 3 dimensions)

for more detail. But to really spe
ify what is being integrated, the proper notation is

w
(x,y)∈R

f(x, y) |dx ∧ dy|

(in 2 dimensions) or w
(x,y,z)∈R

f(x, y, z) |dx ∧ dy ∧ dz|

(in 3 dimensions), whi
h will be explained in Se
tion 6.5 starting on page 60. Most people don t write all

of this out, however; in parti
ular, the textbook writes

s
R
f(x, y) dxdy (in 2 dimensions) or

t
R
f(x, y, z)

dxdy dz (in 3 dimensions); the repeated integral symbols are a
tually unne
essary in 
ontext, but other-

wise this is a simpli�
ation of the proper notation that I wrote above.

Note that in any spe
i�
 example (say in 2 dimensions), the statement that (x, y) ∈ R and the ex-

pression f(x, y) will be repla
ed with a more expli
it statement and a more expli
it expression. For exam-

ple, if R = {x, y | x2 + y2 ≤ 1} and f = (x, y 7→ 2x+ 3y) (that is, f(x, y) = 2x+ 3y for all x and y), thenr
(x,y)∈R

f(x, y) |dx ∧ dy| be
omes w
x2+y2≤1

(2x+ 3y) |dx ∧ dy|,

and you would often write this without dire
tly mentioning either R or f .
Another notation is to write dA and dV in pla
e of |dx ∧ dy| and |dx ∧ dy ∧ dz| respe
tively, but note

that these are not the di�erentials of any quantities A and V ; you 
an write d̄ in pla
e of d to avoid this

misleading impression, but hardly anybody ever does that. In any 
ase, whether you write it |dx ∧ dy|,
dxdy, dA, or d̄A, this part of the integrand is 
alled the area element; similarly, |dx ∧ dy ∧ dz|, dxdy dz,
dV , and d̄V are all ways to write the volume element.

The textbook de�nes these integrals formally as a limit of Riemann sums 
reated by dividing the re-

gion R into re
tangles with horizontal and verti
al sides. I prefer to de�ne them by dividing R into trian-

gles with sides in arbitrary dire
tions. Either way, you tag su
h a partition of R so that ea
h part (ea
h

re
tangle or triangle) is tagged with a spe
i�
 point, evaluate f at that point, multiply by the area of the

part (sin
e the areas of re
tangles and triangles are easy to 
al
ulate), and add these up. The limit as the

length of the largest side of any part goes to zero, if it exists, is the value of the Riemann integral. (I am

speaking here as if we are in 2 dimensions; in 3 dimensions, repla
e re
tangles with boxes, triangles with

tetrahedrons, and areas with volumes. This 
an also be generalized to higher dimensions.)

The two de�nitions are equivalent, basi
ally be
ause re
tangles 
an always be divided further into tri-

angles by 
utting them in half (and boxes 
an be divided into tetrahedrons by 
utting them into sixths,

et
). Proving equivalen
e in the other dire
tion is tri
kier, be
ause you 
an t divide triangles into re
tan-

gles (mu
h less ones parallel to the 
oordinate axes as the textbook requires); however, you 
an divide any

triangle almost 
ompletely into small re
tangles, with only a small part left over, and this small leftover

part be
omes arbitrarily small with su�
iently small re
tangles. This is enough to make the proof work

when it s written out in full, but I won t get into that level of detail here.
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6.2 The Fubini theorems

As a pra
ti
al matter, evaluating these integrals depends on these theorems:

1. The integral of a 
ontinuous fun
tion on a 
ompa
t (that is 
losed and bounded) region always exists:r
(x,y)∈D

f(x, y) |dx ∧ dy| exists if f is 
ontinuous and D is 
ompa
t (and similarly in more variables).

2. If two regions D1 and D2 are 
ompletely disjoint (no overlap at all), or if their overlap is 
ontained

within a single point/line/plane/et
 of fewer dimensions than the overall number of variables, and if a

fun
tion f has integrals on both of these regions, then the integral of f on their union (the 
ombined

region D1 ∪D2) also exists and is the sum of the separate integrals:

w
(x,y)∈D1∪D2

f(x, y) |dx ∧ dy| =
w
(x,y)∈D1

f(x, y) |dx ∧ dy|+
w
(x,y)∈D2

f(x, y) |dx ∧ dy|

(and similarly in more variables) if the integrals on the right exist and the overlap has a smaller di-

mension.

3. In any double (or higher) integral, if two of the variables are swapped in both the fun
tion being in-

tegrated and in the region over whi
h it is integrated (or equivalently, by renaming the variables, by

swapping the variables only within the area/volume/et
 element), then the result is the same (so that

if either integral exists, then so does the other, and then they are equal):

w
(x,y)∈D

f(x, y) |dx ∧ dy| =
w
(x,y)∈D

f(x, y) |dy ∧ dx|

(and similarly in more variables).

4. For a region D in 2 dimensions, if there are 
onstants a and b with a ≤ b and 
ontinuous fun
tions g
and h (ea
h of 1 variable) su
h that (x, y) ∈ D if and only if a ≤ x ≤ b and g(x) ≤ y ≤ h(x), and if

g(x) ≤ h(x) whenever a ≤ x ≤ b, then the integral of any 
ontinuous fun
tion f on D is the same as a


orresponding iterated integral :

w
(x,y)∈D

f(x, y) |dx ∧ dy| =
w b

x=a

Åw h(x)

y=g(x)
f(x, y) dy

ã
dx.

Te
hni
ally, the inner integral here is an integral along a 
urve (a
tually a straight line segment) in

the (x, y)-plane, as in Chapter 5, with a 
onstant value of x.

5. For a region D in 3 (or more) variables, if there are a 
ompa
t region R in 2 variables (or in general

a 
ompa
t region of one fewer dimension) and 
ontinuous fun
tions g and h of 2 variables ea
h (or in

general with the same number of variables as R has dimensions) su
h that (x, y, z) ∈ D if and only if

(x, y) ∈ R and g(x, y) ≤ z ≤ h(x, y), and if g(x, y) ≤ h(x, y) whenever (x, y) ∈ R (or similarly in more

variables), then the integral of any 
ontinuous fun
tion f on D is the same as a 
orresponding iterat-

ed integral:

w
(x,y,z)∈D

f(x, y, z) |dx ∧ dy ∧ dz| =
w
(x,y)∈R

Åw h(x,y)

z=g(x,y)
f(x, y, z) dz

ã
|dx ∧ dy|

(and similarly in more variables).

The last two of these are the Fubini Theorem (for Riemann integrals of 
ontinuous fun
tions).

By itself, the Fubini Theorem only works for regions of parti
ular shapes, but the other theorems


ombine to make it more useful. First of all, Theorem 3 allows us to put the variables in whatever or-

der we like. Even so, the regions still require parti
ular shapes; we 
an just orient those however we wish.

Theorem 2, at least in many 
ases, allows us to divide a region up into smaller regions appropriate for the

Fubini Theorem; the only question is whether the integrals exist. Theorem 1 guarantees this existen
e for


ontinuous fun
tions.

So using these in order, if you want to integrate over a 
razy region, then divide the region into pie
es

of suitable shape. If the fun
tion is 
ontinuous and these smaller regions are all 
ompa
t, then you know

that their integrals exist; and if the regions overlap only slightly, then you 
an re
over the answer to the

original problem by adding them up. Finally, to get the integrals on these small regions, think of the vari-

ables as 
oming in whi
hever order works best, and use the Fubini Theorem (possibly more than on
e) to

repla
e double and triple integrals with iterated integrals. Hopefully, these will be integrals that you 
an

do!
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6.3 Systems of inequalities

In order to set up multiple integrals, it is ne
essary to solve systems of inequalities, a topi
 that isn t

given mu
h attention in Algebra 
ourses. It s also ne
essary to present the solutions in a spe
i�
 form. For

purposes of multiple integration, a system of inequalities is solved if it takes a form su
h as this:

a ≤ x ≤ b,

f(x) ≤ y ≤ g(x),

h(x, y) ≤ z ≤ k(x, y);

where x, y, and z are the variables in the system, a and b are 
onstants with a ≤ b, f and g are fun
tions

with the property that f(x) ≤ g(x) whenever a ≤ x ≤ b, and h and k are fun
tions of two variables su
h

that h(x, y) ≤ k(x, y) whenever a ≤ x ≤ b and f(x) ≤ y ≤ g(x). (In other words, as you go through the

inequalities in the list, if you have values of the variables so far that make all of the inequalities true so

far, then there is at least one value of the next variable that also makes the next inequality true.)

This solution 
orresponds to an iterated integral of the form

w b

a

w g(x)

f(x)

w k(x,y)

h(x,y)
· · · dz dy dx.

Of 
ourse, there 
ould be more or fewer than 3 variables, and they don t have to 
ome in alphabeti
al or-

der. Also, we will 
onsider the system solved if it s broken into 
ases, ea
h of whi
h takes the form above.

(This 
orresponds to when you must write a sum of iterated integrals.) In prin
iple, some or all of the in-

equalities in a system of inequalities (and hen
e, typi
ally, in its solution) 
ould be stri
t, although the

ones that we need will always be weak (so that the domain of integration will be 
losed). Similarly, one

side or the other of some or all of the 
ompound inequalities 
ould be left out, but ours will never do this

(so that the domain of integration will be bounded, at least when the fun
tions that appear in the solution

are are all 
ontinuous, so that the Extreme Value Theorem applies).

One way to solve inequalities is to turn them into equations �rst, then test potential solutions on ea
h

side of the solutions to the equations. (This also requires the expressions involved to be 
ontinuous, so

that the Intermediate Value Theorem applies.) For 
ompound inequalities su
h as we have here, the di-

re
tion of the inequality is usually straightforward. Besides that, often a domain of integration is given as

bounded by 
ertain equations rather than by inequalities, and then you have no 
hoi
e but to start with

the equations.

Sometimes the relevant equations will have only one solution (or even none), and you ll �nd the oth-

er bound (or even both) by setting the two bounds on the next line equal. For example, in the solution

template above, you might �nd a and/or b as the solutions to f(x) = g(x) rather than dire
tly from giv-

en equations or inequalities. (Another way to think of this is that you get a ≤ x ≤ b as the solution to

f(x) ≤ g(x).) Similarly, you might �nd f and/or g by solving h(x, y) = k(x, y) for y.
For example, let s solve this system of inequalities:

x ≥ 0,

y ≥ 0,

z ≥ 0,

x+ y + z ≤ 1.

I ll start at the bottom and work my way up. I 
ould start with any variable, but to mat
h the pattern

at the beginning of this se
tion, I ll start with z. If I start with the equations z = 0 and x+ y + z = 1 (by

turning the inequalities that involve z into equations), then the solutions for z are 0 and 1− x− y. Set-
ting these equal and solving for y, I get y = 1− x; turning the only remaining inequality involving y into
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an equation, I also get y = 0. Setting 1− x and 0 equal, I get x = 1; turning the last remaining inequality,

involving only x, into an equation, I get x = 0. At this point, my results look like this:

x = 1, 0;

y = 1− x, 0;

z = 0, 1− x− y.

I still need to turn these into 
ompound inequalities. Obviously, 1 > 0. Choosing a number in between,

su
h as 1/2, for x, I see that 1− x > 0, be
ause 1− x = 1/2 when x = 1/2. Keeping x = 1/2 and 
hoos-

ing a number between 0 and 1/2, su
h as 1/4, for y, I see that 0 < 1− x− y = 1/4. Therefore, the �nal
solution is

0 ≤ x ≤ 1,

0 ≤ y ≤ 1− x,

0 ≤ z ≤ 1− x− y.

So to integate over this region, I d set up an integral of the form

w 1

0

w 1−x

0

w 1−x−y

0
· · · dz dy dx.

If the previous example were given simply as the region bounded by the 
oordinate planes and the

plane with x+ y + z = 1, then I would have to solve it pretty mu
h as above, with equations. Howev-

er, sin
e it was given originally as a system of inequalities, I 
ould also have solved it using entirely in-

equalities and no equations. Then I would solve the inequality x+ y + z ≤ 1 for z to get z ≤ 1− x− y,
then 
ombine this with z ≥ 0 to get the 
ompound inequality 0 ≤ z ≤ 1− x− y. But this 
an only ap-

pear in the solution when 0 ≤ 1− x− y; solving this for y, I get y ≤ 1− x. Combining this with y ≥ 0, I
get 0 ≤ y ≤ 1− x. And this is only valid when 0 ≤ 1− x, so x ≤ 1, whi
h 
ombines with x ≥ 0 to produ
e

0 ≤ x ≤ 1. At this point, the solution is 
omplete:

0 ≤ x ≤ 1,

0 ≤ y ≤ 1− x,

0 ≤ z ≤ 1− x− y.

(But it s easy to get turned around with inequalities, so I usually treat everything as equations �rst and

then �gure out the dire
tions of the �nal inequalities afterwards.)

You might also start with an integral and want to turn it into a system of inequalities (perhaps be-


ause you want to rearrange the order of the variables.) You 
an turn it dire
tly into a system of 
om-

pound inequalities, but when you look at the inequalities that make these up, some of them are redun-

dant. For example, suppose that you start with

w 1

0

w 1−x

0

w 1−x−y

0
· · · dz dy dx.

This immediately be
omes the system

0 ≤ x ≤ 1,

0 ≤ y ≤ 1− x,

0 ≤ z ≤ 1− x− y;

this 
an be further broken down into

x ≥ 0, x ≤ 1,

y ≥ 0, y ≤ 1− x,

z ≥ 0, z ≤ 1− x− y.
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However, moving from the bottom up, you 
an see that 0 ≤ z ≤ 1− x− y implies y ≤ 1− x, and 0 ≤ y ≤
1− x implies x ≤ 1. Therefore, the only inequalities dire
tly needed are

x ≥ 0, y ≥ 0, z ≥ 0, z ≤ 1− x− y,

whi
h is pretty mu
h the system that I began with when I worked this example the other way. (You 
ould

also work with equations rather than inequalities to spot the redundant ones, as long as you 
an 
ount on

the original integral being set up properly.) Now you 
an solve with the variables in a di�erent order if

you wish.

In this way, all of the problems setting up integrals 
an be solved with Algebra even if you 
an t get a


lear pi
ture of the region of integration on a graph.

6.4 Change of variables in single integrals

I often say that the di�erentials in expressions su
h as 3 dx+ x2 dy + ey dz,
r 1

x=03x
2 dx, and dy/dx 
an

and should be treated literally, not merely as mnemoni
s for appre
iable 
hanges in a limit or an approxi-

mation. For this to work in multiple (double, triple, et
) integrals, this requires a little 
are.

One example of how it s useful to take di�erentials literally is that one 
an do a 
hange of variables in

a single-variable integral by 
al
ulating with di�erentials; for example, to integrate

√
1− x2 dx (say from

x = 0 to x = 1), let u = asinx, so that x = sinu and dx = cosu du, and 
al
ulate:

w 1

x=0

√
1− x2 dx =

w asin 1

u=asin 0

»
1− (sinu)

2
(cosu du) =

w π/2

u=0
cos2 u du =

Å
1

2
u+

1

4
sin (2u)

ã∣∣∣∣
π/2

u=0

=
π

4
.

(In
identally, to integrate cos2 u du, I used the trigonometri
 identity that cos2 θ = 1/2 + 1/2 cos (2θ).
This, along with sin2 θ = 1/2− 1/2 cos (2θ), will 
ome up a lot in the rest of this 
ourse.) You 
an even

develop a general formula for this 
hange of variables:

w b

x=a
f(x) dx =

w asin b

u=asin a
f(sinu) cosu du.

If you use this formula with a = 0, b = 1, and f(x) =
√
1− x2

for all x, then you re
over the previous 
al-


ulation. (This is really the same idea that I used for integrating along 
urves in Chapter 5.)

There is one big di�eren
e between single-variable integrals as they are usually done in Cal
ulus and

multiple integrals: single-variable integrals are oriented (

r b

x=a
is the integral as x runs from a to b, whereasr a

x=b
is the integral as x runs from b to a, regardless of whether a ≤ b or b ≤ a), while multiple integrals

are unoriented (

r
(x,y)∈R

is the integral on the region R in the (x, y)-plane, without spe
ifying any par-

ti
ular dire
tion in that region). In other words, single-variable integrals are like integrals along oriented


urves (as in Se
tion 15.2 of the textbook), while multiple integrals are like integrals on unoriented 
urves

(as in Se
tion 15.1). So, to make the single-variable example above more like a multiple integral, I ll write

it as w
0≤x≤1

√
1− x2 |dx|.

You 
an interpret this dire
tly as an integral on a 
urve, where the 
urve in question (a
tually a straight

line segment) is the interval [0, 1] on the real number line. Like integrals on unoriented 
urves in higher di-

mensions, this needs |dx| =
√
dx2

so that the orientation (from 0 to 1 or from 1 to 0) makes no di�eren
e:

w
0≤x≤1

√
1− x2 |dx| =

w 1

x=0

√
1− x2 dx =

π

4
, and

w
0≤x≤1

√
1− x2 |dx| =

w 0

x=1

√
1− x2 (−1) dx =

π

4
.

Here, |dx| = dx in the �rst 
al
uluation, be
ause x is in
reasing from 0 to 1, while |dx| = −dx in the next


al
ulation, be
ause x is de
reasing from 1 to 0; the �nal result is the same either way.
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Then to redo the subsitution u = asinx, instead of simply dx = cosu du, what really matters is that

|dx| = |cosu du| = |cosu| |du| = cosu |du|.

(I 
an simplify |cosu| to cosu be
ause u = asinx means that −π/2 ≤ u ≤ π/2, so that cosu ≥ 0. A
tual-

ly, I already used this fa
t, when I simpli�ed

√
1− sin2 u to cosu instead of to |cosu|.) Now the general

formula for the substitution is

w
a≤x≤b

f(x) |dx| =
w
asin a≤u≤asin b

f(sinu) cosu |du|,

and the spe
i�
 example is

w
0≤x≤1

√
1− x2 |dx| =

w
0≤u≤π/2

√
1− sin2 u cosu |du| =

w π/2

u∈0
cos2 du =

π

4
.

To a
tually evaluate this integral, I had to swit
h from

r
0≤u≤π/2 to

r π/2

u=0 and turn |du| into du (be
ause u

is in
reasing from 0 to π/2); you should think of this as the one-dimensional analogue of turning a multi-

ple integral into an iterated integral (where again the normal way of doing this sets up the bounds on the

integrals so that the variables are in
reasing).

Although I gave a general formula for the substitution u = asinx, I 
an give an even more general

formula, for an arbitrary substitution, where u is an arbitrary fun
tion of x (well, as long as that fun
-

tion is one-to-one and has a di�erentiable inverse). To make it look more like the formulas for multiple

integrals, I ll write this as x = g(u); sin
e g is one-to-one, however, you 
an also write u = g−1(x). Then
dx = g′(u) du, so w

a≤x≤b
f(x) |dx| =

w
g−1(a)≤u≤g−1(b)

f
(
g(u)

)
|g′(u)| |du|

if g (and hen
e g−1
) is in
reasing, or

w
a≤x≤b

f(x) |dx| =
w
g−1(b)≤u≤g−1(a)

f
(
g(u)

)
|g′(u)| |du|

if g (and hen
e g−1
) is de
reasing. (A one-to-one fun
tion de�ned on an interval must be either in
reasing

or de
reasing to be 
ontinuous; otherwise, it would violate the Intermediate Value Theorem.)

To avoid the ambiguity of whether g is in
reasing or de
reasing (and to make things look even more

like the multi-variable 
ase), I ll write x ∈ R instead of a ≤ x ≤ b, so that R is the interval [a, b], and I ll

write f(u) ∈ R instead of either g−1(a) ≤ u ≤ g−1(b) or g−1(b) ≤ u ≤ g−1(a). Then the formula is

w
x∈R

f(x) |dx| =
w
g(u)∈R

f
(
g(u)

)
|g′(u)| |du|.

This is the 
omplete analogue of the 
hange-of-variables formula for double integrals that appears on page 63

in Se
tion 6.6.

6.5 The wedge produ
t

There is another 
ompli
ation that only appears with more than one variable. On page 55, I wrote the

double integral of f on R as w
(x,y)∈R

f(x, y) |dx ∧ dy|.

You 
an already see where the absolute value is 
oming from; as with |dx| in the one-variable 
ase, it s be-


ause we re integrating over an unoriented region R. But now I want to explain the wedge (∧).
The wedge produ
t of di�erential forms is kind of like the 
ross produ
t of ve
tors; however, in-

stead of trying to interpret it as another ve
tor (or a s
alar), it is simply another di�erential form, but

one of higher `rank' than the original forms. (Just as the operation that produ
es the 
ross produ
t may

be 
alled outer multipli
ation of ve
tors, so the operation that produ
es the wedge produ
t may be 
alled
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exterior multipli
ation of di�erential forms, but the term `wedge produ
t' is mu
h more 
ommon.) You ve

used di�erential forms earlier in this 
ourse; those have rank 1, and they 
an be evaluted at a point and a

ve
tor. To evaluate a di�erential form of rank 2, you need a point and 2 ve
tors; to evaluate a di�erential

form of rank 3, you need a point and 3 ve
tors; and so on.

The wedge produ
t also involves subtra
ting one thing from another (again like the 
ross produ
t); if

α and β are 1-forms (di�erential forms of rank 1, as we ve been using so far), P0 is a point, and v1 and v2

are ve
tors, then

(α ∧ β)|P=P0,
dP=v1,v2

=
1

2
α|P=P0,

dP=v1

β|P=P0,
dP=v2

− 1

2
α|P=P0,

dP=v2

β|P=P0,
dP=v1

.

That is, to evaluate the wedge produ
t α ∧ β at a point P0 and two ve
tors v1 and v2, �rst evaluate α at

P0 and v1 and evaluate β at P0 and v2, multiply the results, then swap whi
h ve
tor goes with whi
h dif-

ferential form, evaluate and multiply again, then subtra
t the two produ
ts, and divide by 2. For example,

if α = x2 dx+ xy dy, β = y2 dx− xy dy, P0 = (2, 3), v1 = 〈0.01, 0.04〉, and v2 = 〈−0.01, 0〉, then
(
(x2 dx+ xy dy) ∧ (y2 dx− xy dx)

)∣∣
(x,y)=(2,3),
d(x,y)=〈0.01,0.04〉,〈−0.01,0〉

=
1

2
(x2 dx+ xy dy)| (x,y)=(2,3),

〈dx,dy〉=〈0.01,0.04〉

(y2 dx− xy dy)| (x,y)=(2,3),
〈dx,dy〉=〈−0.01,0〉

− 1

2
(x2 dx+ xy dy)| (x,y)=(2,3),

〈dx,dy〉=〈−0.01,0〉

(y2 dx− xy dy)| (x,y)=(2,3),
〈dx,dy〉=〈0.01,0.04〉

=
1

2

(
(2)

2
(0.01) + (2)(3)(0.04)

)(
(3)

2
(−0.01)− (2)(3)(0)

)

− 1

2

(
(2)

2
(−0.01) + (2)(3)(0)

)(
(3)

2
(0.01)− (2)(3)(0.04)

)

= (0.28)(−0.09)− (−0.04)(−0.15) = −0.0156.

To see what |dx ∧ dy| has to do with area, look at a triangle whose sides are given by ve
tors v1 =
〈a, b〉, v2 = 〈c, d〉, and v3 = v2 − v1 = 〈c− a, d− b〉. If you evaluate |dx ∧ dy| at (any point and) v1 and v2,

then you really get the area of this triangle:

|dx ∧ dy|
∣∣
〈dx,dy〉=〈a,b〉,〈c,d〉

=
∣∣(dx ∧ dy)|〈dx,dy〉=〈a,b〉,〈c,d〉

∣∣ =
∣∣∣∣
1

2
(a)(d)− 1

2
(b)(c)

∣∣∣∣ =
1

2
|ad− bc| = 1

2
|v1 × v2|,

whi
h is indeed the area of the triangle (half the area of a parallelogram). This is ultimately why |dx ∧ dy|
is the right thing to use as the area element in an integral. (Note that the same result 
omes from using

v3 in pla
e of either v1 or v2, or by swapping the order of the ve
tors or using the opposites of either or

both ve
tors, thereby 
overing all of the ways to des
ribe the triangle by giving ve
tors to represent two of

its three sides.)

A few basi
 properties of the wedge produ
t follow immediately from the de�nition:

α ∧ (uβ) = (uα) ∧ β = u(α ∧ β);

(α+ β) ∧ γ = α ∧ γ + β ∧ γ;

α ∧ (β + γ) = α ∧ β + α ∧ γ;

α ∧ β = −β ∧ α;

α ∧ α = 0,

where α, β, and γ are 1-forms and u is a 0-form, that is an ordinary non-di�erential quantity. (What these

equations te
hni
ally mean is that if you evaluate ea
h side at the same point and ve
tors, then you ll get

the same result on both sides, assuming that the operations appearing in the expressions are de�ned.) So

if you treat the wedge produ
t as a kind of multipli
ation, then you 
an use the ordinary rules of algebra,
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so long as you keep tra
k of the order of multipli
ation in the wedge produ
t and throw in a minus sign

whenever you reverse the order of multipli
ation of two 1-forms (similarly to the 
ross produ
t of ve
tors).

To see how this works, revisit the example above where α = x2 dx+ xy dy and β = y2 dx− xy dy.
The wedge produ
t α ∧ β 
an be simpli�ed as follows:

*α ∧ β = (x2 dx+ xy dy) ∧ (y2 dx− xy dy)

= (x2 dx) ∧ (y2 dx) + (x2 dx) ∧ (−xy dy) + (xy dy) ∧ (y2 dx) + (xy dy) ∧ (−xy dy)

= (x2)(y2)(dx ∧ dx) + (x2)(−xy)(dx ∧ dy) + (xy)(y2)(dy ∧ dx) + (xy)(−xy)(dy ∧ dy)

*= x2y2(0)− x3y dx ∧ dy + xy3(−dx ∧ dy)− x2y2(0)

*= (−x3y − xy3) dx ∧ dy = −xy(x2 + y2) dx ∧ dy.

I ve written this out in detail so that ea
h step uses only one of the basi
 algebrai
 properties of the wedge

produ
t; but with a little pra
ti
e, you should only need to write down the lines with asterisks after them.

When you multiply the expressions (think FOIL), make sure to keep tra
k of the order in whi
h you mul-

tiply the di�erentials; if you multiply a di�erential by itself (su
h as dx ∧ dx), then you get zero, and if

you multiply di�erentials in an order di�erent from the order that you prefer (su
h as dy ∧ dx instead of

dx ∧ dy if you prefer alphabeti
al order), then you 
an rearrange the order if you throw in a minus sign

whenever two di�erentials swit
h pla
es. In this way, you 
an go from the �rst line in the 
al
ulation above

to the next line with an asterisk, skipping over the lines in between. (With a little more pra
ti
e, you 
an

even skip that line and go straight from the �rst line to the last line.)

To 
he
k that this simpli�
ation of α ∧ β is 
orre
t, I ll evaluate it again at P0 = (2, 3), v1 = 〈0.01, 0.04〉,
and v2 = 〈−0.01, 0〉. I get

(−xy(x2 + y2) dx ∧ dy)| (x,y)=(2,3),
d(x,y)=〈0.01,0.04〉,〈−0.01,0〉

=
(
−xy(x2 + y2)

)∣∣
(x,y)=(2,3)

(dx ∧ dy)|〈dx,dy〉=〈0.01,0.04〉,〈−0.01,0〉

= −(2)(3)
(
(2)

2
+ (3)

2)
Å
1

2
(0.01)(0)− 1

2
(0.04)(−0.01)

ã
= −0.0156,

the same result as before. (Te
hni
ally, what makes the original and simpli�ed versions of α ∧ β equal to

ea
h other as di�erential forms is pre
isely that you will get the same results when evaluating them as

long as you use the same point and ve
tors, no matter whi
h point and ve
tors those are.)

To de�ne a wedge produ
t between forms of higher rank, you have to add and subtra
t all possible

permutations of the possible orders in whi
h to write the ve
tors at whi
h the result is evaluated. Keeping

tra
k of all of this in a general formula is 
ompli
ated, but the important point for our 
al
ulations is that

the rules above 
ontinue to apply, and additionally we have an asso
iative law for wedge produ
ts:

(α ∧ β) ∧ γ = α ∧ (β ∧ γ).

(This asso
iative law is not true for 
ross produ
ts of ve
tors, so the wedge produ
t is easier to work with.)

We will not a
tually need to evaluate these higher-rank forms in this 
ourse; what s ne
essary is to work

with them algebrai
ally. In other words, the only 
al
ulation in this se
tion that is really useful for this


ourse is the one with the asterisks near the top of this page.

6.6 Change of variables in multiple integrals

I m now ready to explain 
hange of variables in multiple integrals. If x = g(u, v) and y = h(u, v), where g
and h are �xed di�erentiable binary fun
tions, then

dx ∧ dy = (D1g(u, v) du +D2g(u, v) dv) ∧ (D1h(u, v) du+D2h(u, v) dv)

= D1g(u, v)D1h(u, v) du ∧ du+D1g(u, v)D2h(u, v) du ∧ dv

+D2g(u, v)D1h(u, v) dv ∧ du+D2g(u, v)D2h(u, v) dv ∧ dv

= 0 +D1g(u, v)D2h(u, v) du ∧ dv −D2g(u, v)D1h(u, v) du ∧ dv + 0

=
(
D1g(u, v)D2h(u, v)−D2g(u, v)D1h(u, v)

)
du ∧ dv.
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In other words,

dx ∧ dy =

ÇÅ
∂x

∂u

ã

v

Å
∂y

∂v

ã

u

−
Å
∂x

∂v

ã

u

Å
∂y

∂u

ã

v

å
du ∧ dv.

You 
an also write this as

dx ∧ dy =
∂(x, y)

∂(u, v)
du ∧ dv,

where

∂(x, y)

∂(u, v)
=

Å
∂x

∂u

ã

v

Å
∂y

∂v

ã

u

−
Å
∂y

∂u

ã

v

Å
∂x

∂v

ã

u

=

∣∣∣∣
(∂x/∂u)v (∂y/∂u)v
(∂x/∂v)u (∂y/∂v)u

∣∣∣∣

is the Ja
obian determinant of (x, y) with respe
t to (u, v). (Noti
e that this is the determinant of the

Ja
obian matrix from Se
tion 4.8. The Ja
obian matrix is indi
ated with d/d, while the Ja
obian determi-

nant is indi
ated with ∂/∂.)
The general formula for 
hange of variables now simply requires absolute values:

w
(x,y)∈R

f(x, y) |dx ∧ dy| =
w
(g(u,v),h(u,v))∈R

f
(
g(u, v), h(u, v)

) ∣∣∣∣
∂(x, y)

∂(u, v)

∣∣∣∣ |du ∧ dv|,

as long as (g, h) is jointly one-to-one (meaning that (u1, v1) = (u2, v2) whenever
(
g(u1, v1), h(u1, v1)

)
=(

g(u2, v2), h(u2, v2)
)
). It a
tually still works even if this one-to-one 
ondition is violated, so long as the

ex
eptions form a spa
e of smaller dimension. (I ll explain this by way of example on the next page, in the

dis
ussion of polar 
oordinates in Se
tion 6.7.)

(Besides its usual abbreviations, the textbook s version of this formula, whi
h is Theorem 3 on page 833

in Se
tion 14.8, writes, in e�e
t, (u, v) ∈ G instead of

(
g(u, v), h(u, v)

)
∈ R for the domain of the integral

on the right-hand side, where G is e�e
tively de�ned to be

{
u, v

∣∣ (g(u, v), h(u, v)
)
∈ R

}
. This G is 
alled

the preimage of R under (g, h). But this means that (u, v) ∈ G pre
isely when

(
g(u, v), h(u, v)

)
∈ R, so

these integrals say the same thing, and there is no need to mention G expli
itly. In pra
ti
e, R is given

by some inequalities involving x and y, and you just need to repla
e those two variables with g(u, v) and
h(u, v) respe
tively, just like you do in the integrand f(x, y).)

The general formula in 3 dimensions is similar, but more 
ompli
ated:

w
(x,y,z)∈R

f(x, y, z) |dx ∧ dy ∧ dz|

=
w
(g(u,v,w),h(u,v,w),k(u,v,w))∈R

f
(
g(u, v, w), h(u, v, w), k(u, v, w)

) ∣∣∣∣
∂(x, y, z)

∂(u, v, w)

∣∣∣∣ |du ∧ dv ∧ dw|,

where

∂(x, y, z)

∂(u, v, w)
=

Å
∂x

∂u

ã

v,w

Å
∂y

∂v

ã

u,w

Å
∂z

∂w

ã

u,v

−
Å
∂x

∂u

ã

v,w

Å
∂z

∂v

ã

u,w

Å
∂y

∂w

ã

u,v

−
Å
∂y

∂u

ã

v,w

Å
∂x

∂v

ã

u,w

Å
∂z

∂w

ã

u,v

+

Å
∂y

∂u

ã

v,w

Å
∂z

∂v

ã

u,w

Å
∂x

∂w

ã

u,v

+

Å
∂z

∂u

ã

v,w

Å
∂x

∂v

ã

u,w

Å
∂y

∂w

ã

u,v

−
Å
∂z

∂u

ã

v,w

Å
∂y

∂v

ã

u,w

Å
∂x

∂w

ã

u,v

=

∣∣∣∣∣∣

(∂x/∂u)v,w (∂y/∂u)v,w (∂z/∂u)v,w
(∂x/∂v)u,w (∂y/∂v)u,w (∂z/∂v)u,w
(∂x/∂w)u,v (∂y/∂w)u,v (∂z/∂w)u,v

∣∣∣∣∣∣
,

as long as (f, g, h) is jointly one-to-one (or 
lose to it).
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6.7 Polar 
oordinates

Polar 
oordinates are a widely used example. (See Se
tions 2.8�2.10 if you need to review how these work,

espe
ially in 3 dimensions.) In 2 dimensions, using x = r cos θ and y = r sin θ,

dx ∧ dy = (cos θ dr − r sin θ dθ) ∧ (sin θ dr + r cos θ dθ)

= cos θ sin θ (0) + r cos2 θ (dr ∧ dθ)− r sin2 θ (−dr ∧ dθ)− r2 sin θ cos θ (0)

= (r cos2 θ + r sin2 θ) dr ∧ dθ = r dr ∧ dθ,

so

|dx ∧ dy| = |r| |dr ∧ dθ| = r |dr ∧ dθ|

as long as we only use 
oordinates where r ≥ 0 (whi
h is always possible). In 3 dimensions, throwing in z
gives 
ylindri
al 
oordinates:

|dx ∧ dy ∧ dz| = |r| |dz ∧ dr ∧ dθ| = r |dz ∧ dr ∧ dθ|.

Then swit
hing from (z, r) to (ρ, φ) in exa
tly the same way that polar 
oordinates swit
h from (x, y)
to (r, θ) (so z = ρ cosφ and r = ρ sinφ) gives spheri
al 
oordinates:

|dx ∧ dy ∧ dz| = |r| |ρ| |dρ ∧ dφ ∧ dθ| = ρ2 |sinφ| |dρ ∧ dφ ∧ dθ| = ρ2 sinφ |dρ ∧ dφ ∧ dθ|

if r ≥ 0 and ρ ≥ 0. (Sin
e r = ρ sinφ, if r ≥ 0 and ρ ≥ 0, then sinφ ≥ 0 too.)

These must all be used with restri
tions on the allowed values of the polar 
oordinates, in order for

the 
hange of variables to be one-to-one (mostly). The usual 
hoi
es are r ≥ 0, 0 ≤ θ ≤ 2π, ρ ≥ 0, and 0 ≤
φ ≤ π. (These are 
onsistent, sin
e r = ρ sinφ ≥ 0 when ρ ≥ 0 and 0 ≤ φ ≤ π.) If you don t use r ≥ 0 and

ρ ≥ 0, then you need more absolute values in the formulas, and 0 ≤ φ ≤ π is the only good 
hoi
e for φ
(sin
e it produ
es φ = asin (r/ρ) when ρ 6= 0), but people sometimes use −π ≤ θ ≤ π or −π/2 ≤ θ ≤ 3π/2
instead of 0 ≤ θ ≤ 2π, espe
ially when integrating over a region that doesn t go all of the way around.

Any 
hoi
e a ≤ θ ≤ b is valid as long as b− a = 2π. In other words, if you want the map (g, h) from (r, θ)
to (x, y) to be one-to-one (or 
lose to it), then you 
an t simply use g(x, y) = r cos θ and h(x, y) = r sin θ,
be
ause that is far from one-to-one; instead, you must use g(x, y) = r cos θ for r ≥ 0, 0 ≤ θ ≤ 2π, and
h(x, y) = r sin θ for r ≥ 0, 0 ≤ θ ≤ 2π, or something else with similar restri
tions.

Whatever you use for θ, there is overlap where θ 
omes ba
k to where it started, sin
e sin a = sin b
and cos a = cos b when b− a = 2π (and θ only appears in those forms). However, this is 
ontained with-

in a single line in 2 dimensions and 
ontained within a single plane in 3 dimensions, whi
h doesn t a�e
t

the value of any integral. Besides this, all values of θ produ
e the same result when r = 0, but again, this
is 
ontained within a single line in 2 dimensions and 
ontained within a single plane in 3 dimensions. (It

looks even lower in dimension in re
tangular 
oordinates, a point in the (x, y)-plane and a line in (x, y, z)-
spa
e, but the dimensions that matter are in the (r, θ)-plane and in (z, r, θ)-spa
e.) Similarly, all values

of φ produ
e the same result when ρ = 0, but this is 
ontained within a single plane (in (ρ, φ, θ)-spa
e).
Therefore,

w
(x,y)∈R

f(x, y) |dx ∧ dy| =
w

(r cos θ,r sin θ)∈R,

r≥0, 0≤θ≤2π

f(r cos θ, r sin θ) r |dr ∧ dθ|;

also, w
(x,y,z)∈R

f(x, y, z) |dx ∧ dy ∧ dz| =
w

(r cos θ,r sin θ,z)∈R,
r≥0, 0≤θ≤2π

f(r cos θ, r sin θ, z) r |dz ∧ dr ∧ dθ|;

�nally,

w
(x,y,z)∈R

f(x, y, z) |dx ∧ dy ∧ dz|

=
w

(ρ sinφ cos θ,ρ sinφ sin θ,ρ cosφ)∈R,
ρ≥0, 0≤φ≤π, 0≤θ≤2π

f(ρ sinφ cos θ, ρ cosφ sin θ, ρ cosφ) ρ2 sinφ |dρ ∧ dφ ∧ dθ|.
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The textbook has these same formulas in Se
tions 14.4 and 14.7, but it derives them by geometri
 argu-

ments instead of by 
al
ulating them. (It does 
al
ulate them in Se
tion 14.8, although it uses the Ja
o-

bian determinant instead of the wedge produ
t.)

The restri
tions on polar 
oordinates give us some default bounds on the integrals; in 2 dimensions,

an iterated integral in polar 
oordinates usually looks like

w 2π

θ=0

w ···

r=0
· · · r dr dθ,

with the upper bound on r as the only bound with no default. However, this is not always 
orre
t, sin
e

the 
ondition that (r cos θ, r sin θ) ∈ R 
ould always restri
t the variables even further. Integrals in 
ylin-

dri
al 
oordinates usually look similar, ex
ept that there will be an integral with respe
t to z in there as

well (and there are no default bounds on z). Finally, integrals in spheri
al 
oordinates usually look like

w 2π

θ=0

w π

φ=0

w ···

ρ=0
· · · ρ sinφdρ dφdθ,

with only one bound (out of a potential six) to �nd; but again, not always.
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7 Integration on surfa
es

Just as you 
an integrate a di�erential 1-form (the ordinary kind without the wedge produ
t) on an ori-

ented 
urve, so you 
an integrate a di�erential 2-form (two 1-forms multiplied together by the wedge

produ
t or an expression built out of su
h produ
ts) on an oriented surfa
e. (Similarly, you 
an integrate

a di�erential 3-form on an oriented region of spa
e, and so on for higher rank forms in spa
es of higher di-

mension, but we re not doing any of that ex
ept for the volume integrals that we already 
overed in Chap-

ter 6.)

Similarly, just as you 
an integrate a ve
tor �eld along an oriented 
urve by taking a dot produ
t with

dr to get a di�erential 1-form and you 
an also integrate a ve
tor �eld a
ross a pseudooriented 
urve by

taking a 
ross produ
t with dr to get a di�erential pseudo-1-form (and then reintepreting this as an honest

di�erential 1-form on an oriented 
urve), so you 
an integrate a ve
tor �eld a
ross a pseudooriented sur-

fa
e by taking a dot produ
t with dS to get a di�erential pseudo-2-form (and then reintepreting this as an

honest di�erential 2-form on an oriented surfa
e).

So now I need to explain how to do that.

7.1 Parametrizing surfa
es

Just as you use 1 parameter (often 
alled t) to parametrize a 
urve, so you use 2 variables (often 
alled

u and v) to parametrize a surfa
e. For example, on the surfa
e of the unit sphere (the sphere of radius 1

entred at (x, y, z) = (0, 0, 0)), we 
an use spheri
al 
oordinates with ρ = 1, so that

x = r cos θ = ρ sinφ cos θ = sinφ cos θ,

y = r sin θ = ρ sinφ sin θ = sinφ sin θ, and

z = ρ cos θ = cos θ.

That is, φ and θ are the parameters. (You 
an 
all them u and v instead, but it s 
onvenient to 
all them

by more familiar names when possible.) Stri
tly speaking, the parametrization should also indi
ate the

range of values taken by the parameters; in this 
ase,

0 ≤ φ ≤ π, 0 ≤ θ ≤ 2π.

Now I have made this sphere into a parametrized surfa
e (in 3-dimensional spa
e).

In general, you 
an use φ and θ as parameters whenever the surfa
e 
an be des
ribed by giving ρ as

a fun
tion of φ and θ. (In the example above, that fun
tion was the 
onstant fun
tion with value 1.) Be-

sides using spheri
al 
oordinates, 
ylindri
al 
oordinates are also often useful for parametrization. Most of-

ten, you ll use r and θ as the parameters, but sometimes you ll use z and θ; in any 
ase, you ll need a way

to express the other variable as a fun
tion of the two that you re using as parameters. Then using x =
r cos θ and y = r sin θ, you have x, y, and z all given as fun
tions of the parameters. Finally, if you 
an ex-

press z as a fun
tion of x and y, then you 
an use x and y themselves as the parameters. (You 
ould also

use x and z or y and z, as long as the missing variable is given as a fun
tion of the two that you use.)

While most examples will use familiar 
oordinates as the parameters, in general, so long as you have

P = (x, y, z) given as a point-valued fun
tion of two variables u and v, then the range of this fun
tion is a

parametrized surfa
e. For purposes of integrals, this fun
tion should ideally be one-to-one, but as long

as the overlap is 
ontained within a few lines in the (u, v)-plane, then it won t a�e
t the value of any inte-

grals. (This is the same 
ondition as for 
hange of variables in a double integral.) In the 
ase of 
ylindri
al


oordinates, the overlap is when θ is 0 or 2π, or (if r is being used as a parameter) when r = 0; but these
are 
ontained within lines. In the 
ase of spheri
al 
oordinates, the overlap is when θ is 0 or 2π again,

when φ = 0, or when φ = π; again, these are 
ontained within lines. So 
ylindri
al and spheri
al 
oordi-

nates are always a

eptable for integrals. (With re
tangular 
oordinates, there is no overlap, so they are

de�nitely a

eptable.)
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7.2 Orienting surfa
es

In the 
ase of a 
urve, there are two ways to go along the 
urve, giving two orientations. In the 
ase of a

surfa
e, there are many ways to go along it, but if you start going in some dire
tion, then you 
an turn

from that dire
tion in one way or the other; these give the two orientations of the surfa
e. (A
tually,

not every surfa
e 
an be oriented; a M�obius strip is a famous example of a surfa
e that 
annot be oriented


ontinuously everywhere. However, any parametrized surfa
e 
an be broken into pie
es on whi
h it 
an

be oriented, so it is possible to do some integrals on unorientable surfa
es, as long as they are integrals

whose values don t depend on the orientation. Surfa
e area and other integrals of s
alar �elds, dis
ussed in

Se
tion 7.6 starting on page 70 below, are examples of these.)

A di�erential form su
h as du ∧ dv mat
hes the orientation of a surfa
e if moving in the dire
tion in

whi
h u in
reases and then turning in the dire
tion in whi
h v in
reases mat
hes the surfa
e s orientation.

For example, the (x, y)-plane 
an be oriented 
lo
kwise or 
ounter
lo
kwise; dx ∧ dy mat
hes the 
ounter-


lo
kwise orientation (if (x, y) is a 
ounter
lo
kwise 
oordinate system as usual), while dy ∧ dx mat
hes

the 
lo
kwise orientation.

It s often easier to think of a pseudoorientation of a surfa
e, whi
h (in a 3-dimensional spa
e) is

a dire
tion a
ross the surfa
e. The textbook never refers dire
tly to orientations of surfa
es, but only to

pseudoorientations, whi
h it (
onfusingly) 
alls `orientations'. However, you 
an swit
h between orienta-

tions and pseudoorientations using the right-hand rule: if you 
url the �ngers of your right hand in the

dire
tion of turning indi
ated by an orientation, then your thumb will point in the dire
tion of 
rossing in-

di
ated by the 
orresponding pseudoorientation. So the textbook applies this right-hand rule whenever it

needs an orientation but really has a pseudoorientation.

7.3 De�ning surfa
e integrals

As with other de�nitions of integrals, people never use this dire
tly if they 
an help it, and you ll never

need to use it to solve any of the problems. But for the re
ord, here it is.

So, suppose that you have a di�erential 2-form α written using the variables P = (x, y, z) and their

di�erentials, and an oriented surfa
e in (x, y, z)-spa
e, given by some parametrization fun
tion S (so that

P = (x, y, z) = S(u, v) on the surfa
e) whose domain is a 
ompa
t region R. Then we 
an try to inte-

grate α along the surfa
e, by de�ning the integral

w
P=S(u,v)

α.

To form a Riemann sum to approximate this integral, divide the region R into n triangles, pi
k one

vertex of ea
h triangle, and let vk and wk (where k = 1, 2, . . . , n 
ounts the triangles) be the ve
tors (in

the ambient (x, y, z)-spa
e) from that vertex to the other two verti
es; sele
t whi
h is vk and whi
h is wk

so that, when you turn from vk to wk, this mat
hes the orientation of the surfa
e. Finally, tag this parti-

tion with a point ck within ea
h triangle. The Riemann sum is

n∑

k=1

α|P=S(ck),
dP=uk,vk

.

If you require the lengths of all of the sides of the triangles to all be less than δ and take the limit of all

su
h Riemann sums as δ → 0+, then the value of the integral is de�ned to be this limit, if it exists.

There is a theorem that this limit does exist, at least if α is pie
ewise 
ontinuous and S is pie
ewise


ontinuously di�erentiable (and sometimes otherwise); I don t know a ni
e proof of this dire
tly, but you


an prove that it exists be
ause the pra
ti
al 
al
ulation method in Se
tion 7.4 on the next page works.

Similarly, there is now a theorem that the value of this integral does not depend on the parametrization of

the surfa
e, only the orientation.
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7.4 Cal
ulating integrals

The pra
ti
al method of evaluating an integral along a surfa
e is to pi
k any 
onvenient parametrization

(preferably one that is 
ontinuously di�erentiable) and put everything in terms of those parameters.

For example, I ll integrate z dx ∧ dy on the top half of the unit sphere, oriented to turn 
lo
kwise

when viewed from above the sphere. I ll use the parametrization given on page 67 using spheri
al 
oor-

dinates:

x = sinφ cos θ,

y = sinφ sin θ,

z = cosφ.

Sin
e I only want the top half of the sphere, I use

0 ≤ φ ≤ π

2
, 0 ≤ θ ≤ 2π.

Now I di�erentiate the parametrization:

dx = cosφ cos θ dφ− sinφ sin θ dθ,

dy = cosφ sin θ dφ+ sinφ cos θ dθ,

dz = − sinφdφ.

Then

dx ∧ dy = cosφ sinφ cos2 θ dφ ∧ dθ − sinφ cosφ sin2 θ dθ ∧ dφ = sinφ cosφdφ ∧ dθ.

(Remember that dφ ∧ dφ and dθ ∧ dθ are 0, so that half of the terms immediately vanish, and that dθ ∧
dφ = −dφ ∧ dθ, so that the other two terms 
an be 
ombined into one.) Finally,

z dx ∧ dy = sinφ cos2 φdφ ∧ dθ.

So, I am basi
ally looking at w
0≤φ≤π/2,
0≤θ≤2π

sinφ cos2 φdφdθ,

but I still need to think about the orientation. I really have dφ ∧ dθ rather than dφdθ, and this mat
hes

an orientation in whi
h I turn from a dire
tion in whi
h φ in
reases to a dire
tion in whi
h θ in
reases.

But this appears 
ounter
lo
kwise from above, while the orientation of the surfa
e is 
lo
kwise from above.

To �x this, I 
ould rewrite the form to use dθ ∧ dφ, or equivalently put in a minus sign wherever dφ ∧ dθ
appears. So my real integral is

w 2π

θ=0

w π/2

φ=0
(− sinφ cos2 φ) dφdθ =

w 2π

θ=0

Å
−1

3

ã
dθ = −2

3
π.

You should be able to visualize this example geometri
ally well enough to see that the answer would

have to be negative. Sin
e dx ∧ dy mat
hes an orientation in whi
h you turn from a dire
tion in whi
h

x in
reases to a dire
tion in whi
h y in
reases, whi
h appears 
ounter
lo
kwise from above, while the ori-

entation is supposed to be 
lo
kwise from above, the fa
tor dx ∧ dy will always 
ontribute something neg-

ative. The fa
tor z, on the other hand, will always 
ontribute something positive, sin
e z is always posi-

tive on the top half of the sphere. So, the produ
t z dx ∧ dy will always be negative, so the overall integral

must also be negative.
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In this way, you 
an integrate any 
ontinuous di�erential 2-form on any 
ompa
t surfa
e with a 
on-

tinuously di�erentiable parametrization, be
ause this pro
ess will always leave you with a 
ontinuous dou-

ble integral to do. In 
ase you like formulas, if x = f(u, v), y = g(u, v), and z = h(u, v), then

dx =
∂x

∂u
du +

∂x

∂v
dv = D1f(u, v) du+D2f(u, v) dv,

dy =
∂y

∂u
du +

∂y

∂v
dv = D1g(u, v) du+D2g(u, v) dv, and

dz =
∂z

∂u
du +

∂z

∂v
dv = D1h(u, v) du+D2h(u, v) dv,

so

dy ∧ dz =

Å
∂y

∂u

∂z

∂v
− ∂y

∂v

∂z

∂u

ã
du ∧ dv =

(
D1g(u, v)D2h(u, v)−D2g(u, v)D1h(u, v)

)
du ∧ dv,

dz ∧ dx =

Å
∂z

∂u

∂x

∂v
− ∂z

∂v

∂x

∂u

ã
du ∧ dv =

(
D1h(u, v)D2f(u, v)−D2h(u, v)D1f(u, v)

)
du ∧ dv, and

dx ∧ dy =

Å
∂x

∂u

∂y

∂v
− ∂x

∂v

∂y

∂u

ã
du ∧ dv =

(
D1f(u, v)D2g(u, v)−D2f(u, v)D1g(u, v)

)
du ∧ dv;

thus, the most general exterior 2-form U dy ∧ dz + V dz ∧ dx+W dx ∧ dy in 3 dimensions, where U =
F (x, y, z), V = G(x, y, z), and W = H(x, y, z), be
omes

Å
U
∂y

∂u

∂z

∂v
− U

∂y

∂v

∂z

∂u
+ V

∂z

∂u

∂x

∂v
− V

∂z

∂v

∂x

∂u
+W

∂x

∂u

∂y

∂v
−W

∂x

∂v

∂y

∂u

ã
du ∧ dv

= F
(
f(u, v), g(u, v), h(u, v)

)(
D1g(u, v)D2h(u, v)−D2g(u, v)D1h(u, v)

)
du ∧ dv

+G
(
f(u, v), g(u, v), h(u, v)

)(
D1h(u, v)D2f(u, v)−D2h(u, v)D1f(u, v)

)
du ∧ dv

+H
(
f(u, v), g(u, v), h(u, v)

)(
D1f(u, v)D2g(u, v)−D2f(u, v)D1g(u, v)

)
du ∧ dv.

But I prefer to 
al
ulate dx, dy, and dz dire
tly and apply the wedge produ
ts to the results, rather than

to use any of these formulas.

7.5 Integrating ve
tor �elds

In the textbook, you ll never be dire
tly given di�erential forms to integrate (other than 1-forms to in-

tegrate along 
urves). In some of Se
tion 15.6 and mu
h of Se
tions 15.7 and 15.8 of that book, you in-

tegrate a ve
tor �eld a
ross a surfa
e; to integrate the ve
tor �eld F, you integrate the di�erential form

F(x, y, z) · d̄S, where d̄S is the oriented surfa
e element

d̄S =
1

2
dP ×̂dP = 〈dy ∧ dz, dz ∧ dx, dx ∧ dy〉 = ∂P

∂u
× ∂P

∂v
du ∧ dv.

(People often write d̄S as simply dS, although there is no quantity S that it is the di�erential of.) Here,

P = (x, y, z) as usual; the book prefers r = 〈x, y, z〉, but sin
e dP = dr, partial derivatives of P and of r

are the same, so we 
an equally well write

d̄S =
1

2
dr×̂dr = 〈dy ∧ dz, dz ∧ dx, dx ∧ dy〉 = ∂r

∂u
× ∂r

∂v
du ∧ dv.

(When I write ×̂ between ve
tor-valued di�erential forms, I mean to multiply them as ve
tors using the


ross produ
t and as di�erential forms using the wedge produ
t. Note that you get two minus signs when

swit
hing the order of multipli
ation, so the result of multiplying dP = dr by itself is not zero but rather

twi
e something, and that something is what we mean by d̄S.)
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The middle formula for d̄S (the one without P or r in it) requires the use of the right-hand rule for

the 
ross produ
t. This is be
ause d̄S is really a pseudoform, meaning that it 
hanges sign if you swit
h

between right-hand and left-hand rules. (Re
all that multiplying ve
tors with the 
ross produ
t similar-

ly results in a pseudove
tor, also 
alled an axial ve
tor.) In this way, it makes sense to integrate a ve
tor

�eld through a pseudooriented surfa
e; if you 
onsistently use the left-hand rule instead of the right-hand

rule, then the �nal result will be the same.

(The textbook never writes d̄S or even dS; instead, it writes n d̄σ, or rather n dσ. But d̄σ is just

‖d̄S‖, the magnitude of d̄S; and n is just

”̄dS, a unit ve
tor in the dire
tion of d̄S, that is a unit ve
tor

perpendi
ular to the surfa
e pointing in the dire
tion given by its pseudoorientation. So n dσ is really just

a 
ompli
ated way of saying d̄S. To a
tually 
al
ulate n and d̄σ is a waste of time if d̄S is all that you

really want.)

So for example, integrating the ve
tor �eld F(x, y, z) = 〈0, 0, z〉 = zk through the top half of the unit

sphere pseudooriented downwards is the same as integrating the rank-2 di�erential form

F(x, y, z) · d̄S = 〈0, 0, z〉 · 〈dy ∧ dz, dz ∧ dx, dx ∧ dy〉 = 0 + 0 + z dx ∧ dy = z dx ∧ dy

on that hemisphere oriented 
lo
kwise when viewed from above, be
ause turning the �ngers of your right

hand 
lo
kwise results in your thumb pointing downwards. In the example in Se
tion 7.4 on page 69, I


al
ulated this integral to be −2/3π), and that is exa
tly how I would �nish this problem.

Sin
e the ve
tor �eld that we integrated points upwards while the surfa
e through whi
h we integrat-

ed is pseudooriented downwards, you should expe
t the �nal result to be negative; guessing the sign of the

integral ahead of time like this 
an help you to avoid mistakes with orientation. (If you used the left-hand

rule instead, then you d turn the �ngers of your left hand 
ounter
lo
kwise to make your left thumb point

downwards, but you d also use 〈dz ∧ dy, dx ∧ dz, dy ∧ dx〉 for d̄S, and the �nal result would be the same.)

In 
ase you like formulas, if F(x, y, z) = 〈U, V,W 〉 = 〈F (x, y, z), G(x, y, z), H(x, y, z)〉, with x = f(u, v),
y = g(u, v), and z = h(u, v), then you 
an use the formula at the end of Se
tion 7.4 on page 70. But I pre-

fer to remember only to use F(x, y, z) · d̄S, where d̄S = 〈dy ∧ dz, dz ∧ dx, dx ∧ dy〉, and then the rules for

taking di�erentials and wedge produ
ts will make everything 
ome out 
orre
tly.

7.6 Integrating s
alar �elds

In Se
tion 15.5 and some of Se
tion 15.6 of the textbook, you integrate a s
alar �eld (that is a fun
tion

of 3 variables) on a surfa
e; to integrate the s
alar �eld f , you integrate the di�erential form f(x, y, z) d̄σ,
where

d̄σ = ‖d̄S‖ =
»
(dy ∧ dz)

2
+ (dz ∧ dx)

2
+ (dx ∧ dy)

2
=

∥∥∥∥
∂r

∂u
× ∂r

∂v

∥∥∥∥ |du ∧ dv|.

Be
ause the di�erentials only appear inside a ve
tor magnitude, square, or absolute value (depending on

whi
h version you look at), orientation is irrelevant; instead, simply make sure that all parameters are in-


reasing in the iterated integral.

So for example, integrating the s
alar �eld f(x, y, z) = z on the top half of the unit sphere is the same

as integrating the rank-2 di�erential form

f(x, y, z) d̄σ = z
»
(dy ∧ dz)2 + (dz ∧ dx)2 + (dx ∧ dy)2

on that hemisphere with either orientation. To work out that expression using the parameters φ and θ, I

an use dx ∧ dy = sinφ cosφdφ ∧ dθ from earlier, but I also need to �nd dy ∧ dz and dz ∧ dx. I already
have the individual di�erentials from page 69, so

dy ∧ dz = (cosφ sin θ dφ+ sinφ cos θ dθ) ∧ (− sinφdφ) = sin2 φ cos θ dφ ∧ dθ

and

dz ∧ dx = (− sinφdφ) ∧ (cosφ cos θ dφ− sinφ sin θ dθ) = sin2 φ sin θ dφ ∧ dθ.
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Therefore, I am integrating

cosφ
»

sin4 φ cos2 θ (dφ ∧ dθ)
2
+ sin4 φ sin2 θ (dθ ∧ dφ)

2
+ sin2 φ cos2 φ (dφ ∧ dθ)

2

= cosφ
»

sin4 φ (dφ ∧ dθ)
2
+ sin2 φ cos2 φ (dφ ∧ dθ)

2
= cosφ

»
sin2 φ (dφ ∧ dθ)

2
= sinφ cosφ |dφ ∧ dθ|.

(Here, I simpli�ed

√
sin2 φ to sinφ rather than to |sinφ|, sin
e 0 ≤ φ ≤ π, so that sinφ ≥ 0.)

The value of the integral is now

w 2π

θ=0

w π/2

φ=0
sinφ cosφdφdθ =

w 2π

θ=0

1

2
dθ = π.

(You should expe
t the integral to be positive, sin
e z is always positive on the top hemisphere.) We don t

have to think about orientation when setting up this iterated integral, sin
e the integrand involves |dφ ∧ dθ|
rather than dφ ∧ dθ itself; just make sure that the bounds are set up on the integrals so that ea
h variable

is in
reasing.

If instead I simply want the area of this surfa
e, then I 
an simply integrate d̄σ itself, whi
h gives

w 2π

θ=0

w π/2

φ=0
sinφdφdθ =

w 2π

θ=0
dθ = 2π.

(And that is indeed the area of a hemisphere of radius 1.)
Again, in 
ase you like formulas, if x = f(u, v), y = g(u, v), and z = h(u, v), then

d̄σ =

√Å
∂y

∂u

∂z

∂v
− ∂y

∂v

∂z

∂u

ã2
+

Å
∂z

∂u

∂x

∂v
− ∂z

∂v

∂x

∂u

ã2
+

Å
∂x

∂u

∂y

∂v
− ∂x

∂v

∂y

∂u

ã2
|du ∧ dv|

=

ŒÖ (
D1g(u, v)D2h(u, v)−D2g(u, v)D1h(u, v)

)2

+
(
D1h(u, v)D2f(u, v)−D2h(u, v)D1f(u, v)

)2

+
(
D1f(u, v)D2g(u, v)−D2f(u, v)D1g(u, v)

)2

è

|du ∧ dv|.

But again, I prefer not to use this formula.

However, in the 
ase where x and y are the parameters, that is where x = u, y = v, and z = h(u, v) =
h(x, y), then this simpli�es to

d̄σ =
»
(∂z/∂x)2 + (∂z/∂y)2 + 1 d̄A =

»
‖∇h(x, y)‖2 + 1 d̄A

(where d̄A = |dx ∧ dy|), and this 
omes up fairly often (whenever the surfa
e of integration is the graph of

a di�erentiable fun
tion h).
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8 The Stokes theorems

The Stokes theorems generalize the (se
ond) Fundamental Theorem of Cal
ulus. The basi
 idea is that

the integral of some di�erential form α on some manifold M (that is a 
urve, surfa
e, et
) is equal to the

integral of an antidi�erential of α on the boundary of M .

In the 
ase of one-variable Cal
ulus, the theorem is

w b

x=a
f(x) dx = F (b)− F (a)

whenever f = F ′
. Here, f(x) dx is the di�erential form α; one of its antidi�erentials is F (x) (be
ause the

di�erential of F (x) is d
(
F (x)

)
= F ′(x) dx = f(x) dx = α). Also, the manifold M is the portion of the

number line where x lies between a and b, thought of as a 
urve oriented from x = a to x = b; its bound-
ary 
onsists of the points x = a and x = b, with x = a 
ounted negatively and x = b positively. In pla
e

of integrating the antidi�erential F (x) on these points, we evaluate it at those points and add the results

(whi
h really involves a subtra
tion sin
e one of them is 
ounted negatively).

In higher dimensions, the situation is in some ways easier to understand, be
ause the boundary will

be something more than just a few points, something that we re more used to talking about integrating

on. Spe
i�
ally, the boundary of a 
ompa
t surfa
e (whether a region in the 2-dimensional plane or a


urved surfa
e in 3-dimensional spa
e) is a 
urve or a few 
urves, and the boundary of a 
ompa
t region

in 3-dimensional spa
e is a surfa
e or a few surfa
es. Still, if you 
an think of evaluating a quantity as in-

tegrating it at a point, then all versions of the theorem 
an be expressed in the same way.

This is how the general Stokes Theorem looks:

w
∂M

α =
w
M
d ∧ α.

Here, α is a di�erential form of a 
ertain kind, 
alled an exterior di�erential form, of some rank p, while
M is an oriented manifold of dimension p+ 1 (so a 1-dimensional 
urve if p = 0, a 2-dimensional surfa
e

if p = 1, et
). Also, ∂M is the boundary of M , whi
h is an oriented manifold of dimension p (or perhaps

a 
hain of several su
h manifolds); you know the symbol `∂' as used for partial derivatives, but it is also

used to mean a boundary. Finally, d ∧ α is a kind of di�erential of α, 
alled the exterior di�erential, whi
h

I will explain next.

8.1 Exterior forms and exterior di�erentials

You may re
all from Chapter 7 that a di�erential form of rank p (or p-form for short) may be 
onstru
ted

by taking p ordinary di�erential forms (those of rank 1) and multiplying them together using exterior mul-

tipli
ation to form their wedge produ
t ; more generally, if you apply operations su
h as addition to su
h

expressions, then this still leaves you with a p-form. This 
an then be evaluated at a point along p ve
tors.

So for example, 2y dx ∧ dy − 2xdy ∧ dz is formed by taking the wedge produ
t of 2y dx and dy, giving the

2-form 2y dx ∧ dy, taking the wedge produ
t of 2xdy and dz, giving the 2-form 2xdy ∧ dz, and subtra
t-

ing these, giving the 2-form 2y dx ∧ dy − 2xdy ∧ dz. This 
an now be evaluated at a point (x, y, z) = P0

along two di�erent ve
tors 〈dx, dy, dz〉 = v1 and 〈dx, dy, dz〉 = v2, by the method des
ribed in Se
tion 7.4

(although you never a
tually need to perform su
h an evaluation in this 
ourse).

You may also re
all from Se
tion 4.4 that the di�erential of an ordinary quantity u (whi
h we 
an

now think of as a di�erential form of rank 0) is a 1-form, whi
h you 
an evaluate at a point P0 along a

ve
tor v0 by 
onsidering a parametrized 
urve through P0 with v0 as its velo
ity ve
tor there and seeing

how fast u 
hanges along that 
urve. Spe
i�
ally, if you evaluate u at various points on the 
urve, then the

result is a fun
tion of the parameter of the 
urve, and the derivative of this fun
tion (at the value of the

parameter that gives the point P0 and the tangent ve
tor v0) is the result of evaluating du at P0 along v0.

We 
an 
ombine these ideas to de�ne the exterior di�erential of a p-form α. This will be a (p+ 1)-
form, so it 
an be evaluated at a point P0 along p+ 1 ve
tors v0, v1, . . . , and vp. To evaluate this, 
on-

sider a parametrized 
urve through P0 with v0 as its velo
ity ve
tor there. You 
an evaluate α at any

point on that 
urve along the same p ve
tors v1, v2, . . . , and vp to get a number that is a fun
tion of

the parameter of the 
urve. The derivative of this fun
tion (at the value of the parameter that gives the
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point P0 and the tangent ve
tor v0) is sort of the result of evaluating d ∧ α at P0 along v0, v1, . . . , and vp.

I say `sort of', be
ause you now you need to 
onsider a 
urve through P0 whose velo
ity ve
tor is v1 rather

than v0 and do the same thing, evaluating α at a point on the 
urve along v0, v2, v3, . . . , and vp. Con-

tinue in this way until you ve gone along a 
urve whose tangent ve
tor is vp. Now add up all of those re-

sults where you used a 
urve whose tangent ve
tor was vi for an even value of i, then subtra
t from this

all of the results where you used a 
urve whose tangent ve
tor was vi for an odd value of i, and �nal-

ly divide all of this by p+ 1. Now you really have the result of evaluating d ∧ α at P0 along v0, v1, . . . ,

and vp.

Again, you re not a
tually going to need to do any su
h evaluation in this 
ourse. However, this def-

inition leads to some fairly simple rules for 
al
ulating exterior di�erentials, and this will be useful. Here

are some of the most important rules:

• d ∧ u = du when u is a di�erentiable 0-form;

• d ∧ du = 0 when u is a twi
e-di�erentiable 0-form;

• d ∧ (α+ β) = d ∧ α+ d ∧ β when α and β are di�erentiable p-forms (for any whole number p);
• d ∧ (uα) = du ∧ α+ u d ∧ α when u is a di�erentiable 0-form and α is a di�erentiable p-form (for any

whole number p);
• d ∧ (α ∧ β) = (d ∧ α) ∧ β − α ∧ (d ∧ β) when α is a di�erentiable 1-form and β is a di�erentiable p-
form (for any whole number p).

In words: the exterior di�erential of an ordinary quantity is its ordinary di�erential that we ve been using

all along (be
ause the de�nition is the same in this 
ase); the exterior di�erential of one of these di�eren-

tials is zero (ultimately be
ause of the equality of mixed partial derivatives); the exterior di�erential obeys

the Sum Rule (be
ause every pro
ess in the de�nition obeys a Sum Rule); the exterior di�erential obeys a

kind of Produ
t Rule when multiplying by a 0-form, in whi
h the di�erentials are multiplied by the wedge

produ
t; and the exterior di�erential of a wedge produ
t with a 1-form obeys a kind of Produ
t Rule with

a minus sign in the term where the di�erential operator and the 1-form swit
h order. (These are all spe-


ial 
ases of more 
ompli
ated rules that apply to di�erential forms of any rank, ex
ept that the �rst rule

really does only apply to 0-forms and the Sum Rule doesn t get any more 
ompli
ated.)

Besides the Sum Rule (whi
h should be very easy to use), the main rule that you ll really use is a


ombination of all of the others:

• d ∧ (u dv ∧ dw ∧ · · ·) = du ∧ dv ∧ dw ∧ · · ·.
This will allow you to easily take the exterior di�erential of any di�erential form whi
h is a sum of expres-

sions like this. A di�erential form that is su
h a sum is 
alled an exterior di�erential form, and it is

these that we are most interested in. For example, 2y dx ∧ dy − 2xdy ∧ dz is an exterior di�erential 2-
form, and its exterior di�erential is

d ∧ (2y dx ∧ dy − 2xdy ∧ dz) = d(2y) ∧ dx ∧ dy − d(2x) ∧ dy ∧ dz

= 2dy ∧ dx ∧ dy − 2 dx ∧ dy ∧ dz = −2 dx ∧ dy ∧ dz

(be
ause the �rst term, whi
h multiplies dy by itself, is zero). I ve written out this whole se
tion for 
om-

pleteness, but the only thing that s really useful in this 
ourse is how to perform 
al
ulations like the one

above.

A note on notation: Besides simple 1-forms, the exterior di�erential forms are the most widely stud-

ied di�erential forms; and while the exterior di�erential is not the only way to di�erentiate these, it is by

far the most widely studied way. For this reason, it s 
ommon to leave out the symbol `∧' in the wedge

produ
t and extremely 
ommon to leave out that symbol in the exterior di�erential. So the previous ex-

ample may be written

d(2y dxdy − 2xdy dz) = −2 dxdy dz.

The main reason why I m not using this simpli�ed notation myself is that we do o

asionally multiply dif-

ferential forms using ordinary multipli
ation (rather than exterior multpli
ation) in expressions su
h as

d̄s =
√
dx2 + dy2; here, dx2

really means the 1-form dxdx, not the 2-form dx ∧ dx, whi
h would be ze-

ro. (The formula for d̄σ in Se
tion 7.6 on page 71 even mixes wedge produ
ts with squares. There are al-

so similar expressions, used in the geometry of surfa
es and in general relativity for example, that have a
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dxdy term under the square root, so it s not enough just to treat exponents di�erently.) But if you read

other material on exterior di�erential forms, then it s very likely that some or all of the wedges will be left

out.

8.2 Cohomology

One very important property of the exterior di�erential is that

d ∧ (d ∧ α) = 0

whenever α is a twi
e-di�erentiable exterior form of any rank; that is, an exterior di�erential of an exterior

di�erential is zero. The reason for this is the equality of mixed partial derivatives; if you write out the left-

hand side expli
itly in terms of partial derivatives of expressions appearing in α (whi
h is very 
ompli
ated

but 
an be done), then you will see that everything 
an
els.

This �ts in very ni
ely with the Stokes Theorem; if you apply it twi
e, then you get

w
∂∂M

α =
w
∂M

d ∧ α =
w
M
d ∧ d ∧ α;

the right-hand side is zero be
ause of the previous fa
t, while the left-hand side is zero be
ause everything

in the boundary of a boundary 
an
els. (For example, a 
urve bounding a surfa
e must end where it be-

gan; similarly, a surfa
e bounding a three-dimensional region must 
lose in on itself and have no bounding


urves.)

A manifold (or 
hain of manifolds) is 
alled 
losed if it has no boundary (but this is di�erent from

being a 
losed set of points), and an exterior form is 
alled exa
t if it s the exterior di�erential of some

other exterior form. So the integral of an exa
t form on a 
losed manifold must be zero. This is where the

terms `
losed' and `exa
t' 
ome from (in this 
ontext), but people also turn them around and use them

this way: a 
hain of manifolds is exa
t if it s the boundary of some other manifold, and an exterior form

is 
losed if its exterior di�erential is zero. Then the integral of a 
losed form on an exa
t manifold is also

zero.

Be
ause ∂∂M = 0 and d ∧ d ∧ α = 0, anything exa
t must also be 
losed. Conversely, a 
losed mani-

fold in Rn
must be exa
t, be
ause you 
an simply �ll it in to get something of one higher dimension that

it bounds. Similarly, a 
losed exterior form in n variables is exa
t if it is de�ned for all possible values of

those variables. However, if it is sometimes unde�ned, then it might not be, in parti
ular if there are any

gaps or holes in its domain.

It s therefore possible to study the topology of a manifold (roughly, those features of its shape that


annot be 
hanged by 
ontinuously stret
hing or otherwise distorting it) by studying the exterior forms

de�ned on it. The existen
e of 
losed but non-exa
t forms shows the existen
e of holes or gaps in the man-

ifold, and the rank of the form in question even shows what kind of hole or gap. (The hole in a doughnut

is di�erent from both the gap between a pair of separated blobs and the hollow inside a sphere; these 
ome

from 
losed but non-exa
t forms of ranks 1, 0, and 2, respe
tively. This study of the topology of a shape

by identifying and 
lassifying holes in it is 
alled 
ohomology (or spe
i�
ally de Rham 
ohomology if you

use 
losed but non-exa
t exterior di�erential forms to �nd the holes).

We won t really be doing any 
ohomology in this 
ourse; all that you really need to know are these

fa
ts:

• An exa
t di�erential form, if it is di�erentiable, is also 
losed;

• A 
losed di�erential form, if it is de�ned everywhere, is also exa
t.

The spe
ial 
ase of this for 0-forms has already 
ome up, in the dis
ussion of the Fundamental Theorem of

Cal
ulus in Se
tion 5.4.
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8.3 Green

′
s Theorem

Suppose that R is a 
ompa
t region in the 2-dimensional plane, and suppose that the boundary of R is

a 
urve C. (It s not true that every 
ompa
t region has a 
urve for its boundary; Green s Theorem ap-

plies only to regions whose boundaries may be parametrized as a 
urve or a 
hain of 
urves.) Pseudoori-

ent the 
urve C in the dire
tion from within R to outside of R, and turn this into an orientation following

the right-hand rule (so that you turn 
ounter
lo
kwise from the pseudoorientation to the orientation). In

other words, C is oriented 
ounter
lo
kwise overall, with the region R on the left as you travel along its

boundary C.
If f and g are fun
tions of 2 variables (s
alar �elds) that are 
ontinuously di�erentiable at least on all

of R, then w
(x,y)∈C

(f(x, y) dx+ g(x, y) dy) =
w
(x,y)∈R

(
D1g(x, y)−D2f(x, y)

)
d̄A.

Equivalently, if u = f(x, y) and v = g(x, y) are variable quantities that are 
ontinuously di�erentiable at

least whenever (x, y) ∈ R, then

w
(x,y)∈C

(u dx+ v dy) =
w
(x,y)∈R

Å
∂v

∂x
− ∂u

∂y

ã
d̄A.

This result is Green s Theorem.

To see how this is a spe
ial 
ase of the general Stokes Theorem, look at the exterior di�erential of

u dx+ v dy:

d ∧ (u dx+ v dy) = du ∧ dx+ dv ∧ dy =

Å
∂u

∂x
dx+

∂u

∂y
dy

ã
∧ dx+

Å
∂v

∂x
dx+

∂v

∂y
dy

ã
∧ dy

= 0 +
∂u

∂y
(−dx ∧ dy) +

∂v

∂x
dx ∧ dy + 0 =

Å
∂v

∂x
− ∂u

∂y

ã
dx ∧ dy.

Sin
e dx ∧ dy 
orresponds to the 
ounter
lo
kwise orientation of the region R, the boundary 
urve C must

also be oriented 
ounter
lo
kwise around R.
If F is a 
ontinuously di�erentiable ve
tor �eld in 2 dimensions, then we 
an integrate both F(x, y) ·

dr and F(x, y)× dr on a 
urve su
h as C. These will 
orrespond to two di�erent ways of di�erentiating F.

Writing F = 〈M,N〉,

F(x, y) · dr = 〈M(x, y), N(x, y)〉 · 〈dx, dy〉 = M(x, y) dx+N(x, y) dy,

so (using f = M and g = N) Green s Theorem says that

w
C
F(x, y) · dr =

w
R
(∇× F)(x, y) dA,

where ∇× F is a s
alar �eld 
alled the 
url of F: ∇× F = 〈D1, D2〉 × 〈M,N〉 = D1N −D2M ; or more

expli
itly,

(∇× F)(x, y) =
∂
(
N(x, y)

)

∂x
−

∂
(
M(x, y)

)

∂y
.

On the other hand,

F(x, y)× dr = 〈M(x, y), N(x, y)〉 × 〈dx, dy〉 = M(x, y) dy −N(x, y) dx,

so (now using f = −N and g = M) Green s Theorem also says that

w
C
F(x, y)× dr =

w
R
∇ ·F(x, y) dA,
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where ∇ ·F is a s
alar �eld 
alled the divergen
e of F: ∇ ·F = 〈D1, D2〉 · 〈M,N〉 = D1M +D2N ; or

more expli
itly,

(∇ ·F)(x, y) =
∂
(
M(x, y)

)

∂x
+

∂
(
N(x, y)

)

∂y
.

These are both forms of Green s Theorem; thought of as theorems about ve
tor �elds, the �rst of these

generalizes to Stokes s Theorem in Se
tion 8.4 below, while the last of these generalizes to Gauss s Theo-

rem in Se
tion 8.5. The fa
t that d ∧ du = 0, where u = f(x, y), 
an be intepreted to say that ∇×∇f = 0.
If the boundary of R 
onsists of several 
urves, then we 
an still write Green s Theorem as

w
∂R

(u dx+ v dy) =
w
R

Å
∂v

∂x
− ∂u

∂y

ã
dA

(or similarly for any of the versions involving s
alar or ve
tor �elds), where you integrate along the bound-

ary ∂R by integrating along ea
h 
urve in that boundary and adding the integrals. But now only the out-

ermost 
urve of the boundary is oriented 
lo
kwise overall; the inner 
urves are oriented 
lo
kwise instead.

This still mat
hes the orientation of R, be
ause an inner 
urve surrounds a hole in R rather than R itself.

You 
an also write the integral on the left-hand side as

w
C0

(u dx+ v dy)−
w
C1

(u dx+ v dy)−
w
C2

(u dx+ v dy)− · · · ,

where C0 is the outermost 
urve surrounding R and C1, C2, et
 are the inner 
urves surrounding the holes,

if you orient them all 
ounter
lo
kwise this time. (This still assumes that R 
onsists of a single pie
e; if R

onsists of more than one dis
onne
ted pie
e, then there will be more than one outer 
urve being added.)

The proof of Green s Theorem essentially relies on showing that it is true on a small triangular region,

say

R = {x, y | x ≥ 0, y ≥ 0, x+ y ≤ 1}.

The boundary of this region is a triangle, running from (x, y) = (0, 0) to (1, 0) to (0, 1) ba
k to (0, 0), whi
h
I will divide into three line segments, ea
h parametrized by x or y itself. Then the integral along the bound-

ary is

w 1

x=0
f(x, 0) dx+

w 0

x=1
f(x, 1− x) dx+

w 1

y=0
g(1− y, y) dy +

w 0

y=1
g(0, y) dy

=
w 1

x=0

(
f(x, 0)− f(x, 1− x)

)
dx+

w 1

y=0

(
g(1− y, y)− g(0, y)

)
dy.

Meanwhile, the integral on the triangular region itself is

w 1

y=0

w 1−y

x=0

∂
(
g(x, y)

)

∂x
dxdy −

w 1

x=0

w 1−x

y=0

∂
(
f(x, y)

)

∂y
dy dx

=
w 1

y=0

(
g(1− y, y)− g(0, y)

)
dy −

w 1

x=0

(
f(x, 1 − x)− f(x, 0)

)
dx.

So, Green s Theorem is de�nitely true for this triangular region. But any triangle looks like this under an

appropriate 
hange of 
oordinates, and the area integral on any region R is a limit of the sum of the inte-

grals on su
h triangular regions. Meanwhile, the 
orresponding sums of integrals on the triangles bound-

aries mostly 
an
el, as the same line segment is integrated along in �rst one dire
tion and then the other;

only the integrals along the line segments near the boundary of R survive, and the limit of this is the inte-

gral along the boundary itself. This is ultimately why all of these theorems apply only to exterior di�eren-

tial forms; there would be no 
an
ellation for something like |u dx+ v dy|.
(You 
an similarly prove the general Stokes Theorem �in any rank and any dimension� all at on
e,

if you take 
are to keep 
areful tra
k of everything, but this is a lot of detail when written out in full.)
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8.4 Stokes

′
s Theorem

While Green s Theorem is about a region in the plane, Stokes s Theorem is about a 
urved surfa
e in spa
e.

(Stokes s Theorem is also 
alled the Kelvin�Stokes Theorem or the Curl Theorem; the general Stokes The-

orem is named after this parti
ular 
ase.)

If F = 〈M,N,P 〉 is a 
ontinuously di�erentiable ve
tor �eld in 3 dimensions and S is a 
ompa
t sur-

fa
e in 3 dimensions with boundary 
urve C, then Stokes s Theorem says that

w
C
F(x, y, z) · dr =

w
S
(∇× F)(x, y, z) · dS,

where ∇× F is a ve
tor �eld 
alled the 
url of F: ∇× F = 〈D1, D2, D3〉 × 〈M,N,P 〉 =
〈D2P −D3N,D3M −D1P ,D1N −D2M〉; or more expli
itly,

(∇× F)(x, y, z)

=

Æ
∂
(
P (x, y, z)

)

∂y
−

∂
(
N(x, y, z)

)

∂z
,
∂
(
M(x, y, z)

)

∂z
−

∂
(
P (x, y, z)

)

∂x
,
∂
(
N(x, y, z)

)

∂x
−

∂
(
M(x, y, z)

)

∂y

∏
.

Both the surfa
e S and its boundary C are oriented here, and these orientations must mat
h; that

is, the dire
tion in whi
h you travel along C, as given by its orientation, must agree with the dire
tion in

whi
h you turn along S, as given by its orientation, near the boundary. We usually think of a surfa
e as

being pseudooriented, that is given with a dire
tion a
ross it instead of dire
tions along it, relating this

to the orientation of its boundary with the right-hand rule; but the formula for the 
url also relies on the

right-hand rule, so you 
ould just as easily use the left-hand rule for both.

As with Green s Theorem, this generalizes to a surfa
e whose boundary 
onsists of several 
urves, but

it won t apply to a surfa
e whose boundary 
annot be parametrized as 
urves at all. On the other hand, a

parametrized surfa
e 
ould 
ross itself (just as a 
urve 
an), and Stokes s Theorem 
an 
ontinue to apply

in that 
ase. What ultimately matters is the region in the (u, v)-plane that the parametrization transforms

into the a
tual surfa
e; if the boundary of that region 
an be parametrized as 
urves, then Stokes s Theo-

rem applies to the resulting surfa
e. This also shows one way to prove Stokes s Theorem: by redu
ing it to

Green s Theorem in the (u, v)-plane.
This 
lassi
al Stokes s Theorem is a spe
ial 
ase of the general Stokes Theorem: writing u for M(x, y, z),

v for N(x, y, z), and w for P (x, y, z),

d ∧ (F(x, y, z) · dr) = d ∧ (u dx+ v dy + w dz) = du ∧ dx+ dv ∧ dy + dw ∧ dz

=

Å
∂u

∂x
dx+

∂u

∂y
dy +

∂u

∂z
dz

ã
∧ dx+

Å
∂v

∂x
dx+

∂v

∂y
dy +

∂v

∂z
dz

ã
∧ dy +

Å
∂w

∂x
dx+

∂w

∂y
dy +

∂w

∂z
dz

ã
∧ dz

= 0 +
∂u

∂y
(−dx ∧ dy) +

∂u

∂z
dz ∧ dx+

∂v

∂x
dx ∧ dy + 0 +

∂v

∂z
(−dy ∧ dz) +

∂w

∂x
(−dz ∧ dx) +

∂w

∂y
dy ∧ dz + 0

=

Å
∂w

∂y
− ∂v

∂z

ã
dy ∧ dz +

Å
∂u

∂z
− ∂w

∂x

ã
dz ∧ dx+

Å
∂v

∂x
− ∂u

∂y

ã
dx ∧ dy = (∇× F)(x, y, z) · dS.

The fa
t that d ∧ du = 0, when u = f(x, y, z), be
omes the result that

∇×∇f = 0.

Conversely, if ∇× F = 0, then F must be the gradient of some s
alar �eld f , unless there must be a hole

in the domain of F similar to the hole through a doughnut.
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8.5 Gauss

′
s Theorem

While Green s Theorem is about a region in the plane, Gauss s Theorem is about a region in spa
e. (Gauss s

Theorem is also 
alled the Ostrogradsky�Gauss Theorem or the Divergen
e Theorem.)

If G = 〈M,N,P 〉 is a 
ontinuously di�erentiable ve
tor �eld in 3 dimensions and D is a 
ompa
t re-

gion in 3 dimensions with boundary surfa
e S, then Gauss s Theorem says that

w
S
G(x, y, z) · dS =

w
D
(∇ ·G)(x, y, z) dV ,

where ∇ ·G is a s
alar �eld 
alled the divergen
e of G: ∇ ·G = 〈D1, D2, D3〉 · 〈M,N,P 〉 = D1M +D2N +
D3P ; or more expli
itly,

(∇ ·G)(x, y, z) =
∂
(
M(x, y, z)

)

∂x
+

∂
(
N(x, y, z)

)

∂y
+

∂
(
P (x, y, z)

)

∂z
.

If you give the region D a right-handed orientation, then the orientation on the boundary surfa
e S is


ounter
lo
kwise as viewed from outside the region, whi
h in turn 
orresponds under the right-hand rule

to a pseudoorientation from inside to outside. You 
an just as easily use the left hand for everything, but

the pseudoorientation on S will always be outwards.

As with Green s Theorem, this generalizes to a region whose boundary 
onsists of several surfa
es,

but it won t apply to a region whose boundary 
annot be parametrized as surfa
es at all. Unlike Stokes s

Theorem, Gauss s Theorem 
annot be redu
ed to Green s Theorem using a parametrization; however, the

proof of Gauss s Theorem is quite similar to the proof of Green s Theorem, only with an extra dimension:

the integral along the boundary of a tetrahedron splits into four pie
es, three with one term ea
h and one

with three terms, so six terms grouped into three pairs, while the integral on the tetrahedron splits into

three terms whose partial integrals lead to the same six expressions.

Gauss s Theorem is also a spe
ial 
ase of the Stokes Theorem: writing u for M(x, y, z), v for N(x, y, z),
and w for P (x, y, z),

d ∧ (G(x, y, z) · dS) = d ∧ (u dy ∧ dz + v dz ∧ dx+ w dx ∧ dy)

= du ∧ dy ∧ dz + dv ∧ dz ∧ dx+ dw ∧ dx ∧ dy

=

Å
∂u

∂x
dx ∧ dy ∧ dz + 0 + 0

ã
+

Å
0 +

∂v

∂y
dx ∧ dy ∧ dz + 0

ã
+

Å
0 + 0 +

∂w

∂z
dx ∧ dy ∧ dz

ã

=

Å
∂u

∂x
+

∂v

∂y
+

∂w

∂z

ã
dx ∧ dy ∧ dz = (∇ ·G)(x, y, z) dV .

The fa
t that d ∧ (d ∧ α) = 0, when α = F(x, y, z) · dr, be
omes the result that

∇ · ∇× F = 0.

Conversely, if ∇ ·G = 0, then G must be the 
url of some ve
tor �eld F, unless there is a hollow in the

domain of G similar to the hollow inside a sphere.
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