Detailed solution to Problem Set 41 Exercise 3

Question:
Find the exterior differential (aka exterior derivative) of the following exterior differential form: 2xy dx + 3yz dy + 4xz dz.
Solution:
d ∧ (2xy dx + 3yz dy + 4xz dz) = d(2xy) ∧ dx + d(3yz) ∧ dy + d(4xz) ∧ dz = (2y dx + 2x dy) ∧ dx + (3z dy + 3y dz) ∧ dy + (4z dx + 4x dz) ∧ dz = 2y dx ∧ dx + 2x dy ∧ dx + 3z dy ∧ dy + 3y dz ∧ dy + 4z dx ∧ dz + 4x dz ∧ dz = 0 − 2x dx ∧ dy + 0 − 3y dy ∧ dz + 4z dx ∧ dz + 0 = −2x dx ∧ dy + 4z dx ∧ dz − 3y dy ∧ dz.

Go back to the the course homepage.
This web page was written by Toby Bartels, last edited on 2025 June 23. Toby reserves no legal rights to it.

The permanent URI of this web page is https://tobybartels.name/MATH-2080/2025FA/ps41.3d/.

HTML 5